Mapping and Spatial Distribution of Post Primary Schools in Yola North Local Government Area of Adamawa State, Nigeria

Aliyu A1, Shahidah M.A2, Aliyu R.M3

1Faulty of Geoinformatics and Real Estates, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru
2Faulty of Geoinformatics and Real Estates, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru
3Department of Surveying and Geoinformatics, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria

ABSTRACT

Observed Global positioning system coordinates of all post-primary schools in Yola North local Government Area were obtained. These coordinates were used to create a digital map showing the location of post-primary schools within the study area. The distances obtained were then used in determining the distribution pattern of these schools using Nearest Neighbor Analysis statistical tool, where the value of Nearest Neighbor index (R_n) was computed and was found to be $R_n=1.1124$. This result obtained indicates that random distribution pattern exists in the study area. The test of significance on the value of R_n was then computed using Z-distribution and from the value of Z obtained, it shows that the value of R_n is significant. A database was created using the attributes of the schools and different queries were generated from the geo-spatial database created as shown in figures 4.3 - 4.8. The analysis indicates that Nearest Neighbor analysis can favorably be used in determining the spatial distribution pattern of the post-primary schools and other facilities for a meaningful development. The study clearly depicts the process of using Nearest Neighbor analysis in determining the spatial distribution pattern of the post-primary schools. The study reveals how the schools were located on a digital map and the value of R_n shows that random pattern of distribution exists within the study area. The scale used for the unit area (A) exposes two schools without any Neighbor. Nearest Neighbor Analysis is recommended for determination of spatial distribution pattern of schools, since it shows clearly how these schools are distributed. Writing a computer program should be encouraged in calculating distances from coordinates using a programming language especially MATLAB.

Keywords: Mapping, Global Positioning System, MATLAB, GIS.

1. INTRODUCTION

Surveying and mapping is the bedrock of all physical and socio-economic development of all nations. Therefore the importance of this sector cannot be over emphasized. As a matter of fact, no sustainable development can take place effectively and efficiently without an inventory of human and land resources in their proper spatial context. Advancement in technology has resulted in tremendous growth in surveying and mapping practices around the globe today. The advent of computers and other electronic devices and sensors have given a rapid growth and great impact has been made on surveying and location concept as well as instrumentations.

In the last decade, the technology of surveying has rapidly changed, in that; many developing countries like Nigeria have been virtually left behind in the adaptation of the new technology. In the analogue (old) method in which many Nigerians are used to, the data acquired in surveying are used in mapping. These maps are presented in analogue forms which are quadrant to specific scales. For instance, a scale of 1:100,000 or 1: 500,000 standard map series. Modern technologies have changed all these; maps are now made and recorded electronically. Maps that are normally cumbersome to handle and store are now produced in digital format. The technology, which is principally a computer based makes it possible to display the map of an area covered by this facility on the screen with the advantages of varying the scales and formats to suit the user’s need.

The Global positioning System (GPS) is a relatively new concept in position fixing in surveying. It is a satellite based system for rapid determination of position fixation practically on the earth (land, air or sea) and at any time with pin-point accuracy. The latest technology uses a specialized radio receiver called GPS receiver. It is designed to detect radio signals transmitted from the satellites and calculate positions based on such signals. Receivers intended for geodetic surveys have better accuracy and has an interface that allows rapid data collection. Additionally, in using the GPS for geodetic works, inter-visibility amongst stations is not required. The Global positioning System (GPS) has completely revolutionized the field of surveying and geo-informatics. It is a system that has many applications in various fields ranging from geodetic positioning, control densification,
hydrographic surveying, mining surveying, etc. Its main advantage is in the economy of time and labor, culminating in the reduction of project cost (Idowu, 2003). GPS is a space satellite system that provides accurate information (altitude, bearings, and coordinates of points in absolute terms in three dimensions) to all users. These coordinates which are either rectangular coordinates (X, Y, Z) or geographical coordinates (φ, λ,h), plus other quantities of interest are referenced to a particular ellipsoidal datum, the WGS84 datum.

In GPS positioning, like in many other geodetic applications, the observed values are usually processed using a least squares procedure to obtain the estimates of parameters of interest. This does not require any information about the statistical distribution of observed values to estimate the parameters. However, information on the statistical distribution of the data and results are needed to determine the quality of the observations and hence the reliability of the parameters. Therefore, a statistical testing procedure to determine whether or not to accept the results relies solely on the statistical distribution of the observed quantities used in the least squares procedure.

Although, GPS has become a handy tool for surveying and mapping, statistical distribution of its measured data, which forms the basis for testing the reliability of its results, has not been practically determined. It is in light of the above, that the researcher wishes to investigate the distribution of all the post primary schools in the study area. Digital mapping has now become an indispensable tool in solving many environmental-based problems. The method used for producing digital maps are many, depending on the level of details required, the use to which the map will be put and the source of data.

Amuyunzu and Bijl (1999) successfully produced a digital map of elephant habitats in Kenya. The procedure of mapping land cover involved three stages: (1) data collection and pre-processing. (2) Defining land cover types for the elephant habitat suitability rating model and (3) Use of a decision rule to obtain the defined classes from satellite imagery.

Musa (2005) digitally produced a revised map of the Jimeta-yola metropolis using a combination of SPOT XS images and hand held GPS unit. The GPS unit was used to carve out minor roads that ordinarily could not be seen on the satellite image by applying relevant geospatial techniques; a revised map of the town was created.

Nearest neighbor search (NNS), also known as proximity search, similarity search or closest point search, is an optimization problem for finding closest points in metric spaces. The problem is: given a set S of points in a metric space M and a query point q ∈ M, find the closest point in S to q. In many cases, M is taken to be d-dimensional Euclidean space and distance is measured by Euclidean distance or Manhattan distance. Donald K. in vol. 3 of The Art of Computer Programming (1973) called it the post-office problem, referring to an application of assigning to a residence the nearest post office.

Various solutions to the NNS problem have been proposed. The quality and usefulness of the algorithms are determined by the time complexity of queries as well as the space complexity of any search data structures that must be maintained. The informal observation usually referred to as the curse of dimensionality states that there is no general-purpose exact solution for NNS in high-dimensional Euclidean space using polynomial preprocessing and poly logarithmic search time.

Since the 1970s, branch and bound methodology has been applied to the problem. In the case of Euclidean space this approach is known as spatial index or spatial access methods. Several space-partitioning methods have been developed for solving the NNS problem. Perhaps the simplest is the k-d tree, which iteratively bisects the search space into two regions containing half of the points of the parent region. Queries are performed via traversal of the tree from the root to a leaf by evaluating the query point at each split. Depending on the distance specified in the query, neighboring branches that might contain hits may also need to be evaluated.

Alternatively the R-tree data structure was designed to support nearest neighbor search in dynamic context, as it has efficient algorithms for insertions and deletions. In case of general metric space branch and bound approach is known under the name of metric trees. Particular examples include vp-tree and BK-tree.

Using a set of points taken from a 3-dimensional space and put into a BSP tree, and given a query point taken from the same space, a possible solution to the problem of finding the nearest point-cloud point to the query point is given in the following description of an algorithm. (Strictly speaking, no such point may exist, because it may not be unique. But in practice, usually we only care about finding any one of the subset of all point-cloud points that exist at the shortest distance to a given query point).

The idea is, for each branching of the tree, guess that the closest point in the cloud resides in the half-space containing the query point. This may not be the case, but it is a good heuristic. After having recursively gone through all the trouble of solving the problem for the guessed half-space, now compare the distance returned by this result with the shortest distance from the query point to the partitioning plane.

This latter distance is that between the query point and the closest possible point that could exist in the half-space not searched. If this distance is greater than that returned in the earlier result, then clearly there is no need to search
the other half-space. If there is such a need, then you must go through the trouble of solving the problem for the other half space, and then compare its result to the former result, and then return the proper result. The performance of this algorithm is nearer to logarithmic time than linear time when the query point is near the cloud, because as the distance between the query point and the closest point-cloud point nears zero, the algorithm needs only perform a look-up using the query point as a key to get the correct result.

In some applications it may be acceptable to retrieve a "good guess" of the Nearest Neighbor. In those cases, we can use an algorithm which doesn't guarantee to return the actual Nearest Neighbor in every case, in return for improved speed or memory savings. Often such an algorithm will find the Nearest Neighbor in a majority of cases, but this depends strongly on the dataset being queried.

Nearest Neighbor analysis examines the distances between each point and the closest point to it (Fotheringham, et al 1994 and Wulder, 1999). The Nearest Neighbor is a method of exploring pattern in Locational data by comparing graphically the observed distribution functions of event-to-event or random point-to-event Nearest Neighbor distances, either with each other or with those that may be theoretically expected from various hypothesized models, in particular that of spatial randomness (Upton, 1985), i.e. it describe distribution of points according to their spacing.

The Nearest Neighbor index measures the degree of spatial dispersion in the distribution based on the minimum of the inter-feature distances (Chou, 1997), i.e. it is based on the distance between adjacent point features. Such that the distance between points features in a clustered pattern will be smaller than in a scattered (uniform) distribution with random falling between the two.

Lawrence N. K. (2006) said that the spatial distribution of malaria risk was associated with elevation, and marginally with maximum temperature. The resulting map broadly agreed with expert opinion about the variation of risk in the country, and further showed marked variation even at local level. High risk areas were in the low-lying lake shore regions, while low risk was along the highlands in the country. The map provided an initial description of the geographic variation of malaria risk in Malawi, and might help in the choice and design of interventions, which is crucial for reducing the burden.

Various parties, from federal and local government to private industry and academia as well, have recognized the potential of GIS and ESDA in helping crime analysis. Crime Mapping Research Center of National Institute of Justice organized a "Multi-Method Exploration of Crime Hot Spots" intramural research project in 1997-1998 to investigate twelve crime pattern analysis methods, especially hot spot identification techniques, they includes GIS and Crime Analysis as one of its research themes and challenges in 1999 (Getis, 1999).

According to Tobler's "first law of geography", "everything is related to everything else, but near things are more related than distant things" (Tobler, 1979). Spatial distributions with values at certain locations showing relationship with values at other locations are named spatial autocorrelation. Spatial cluster is positive spatial autocorrelation when similar values are spatially clustered together. On the opposite is the distribution with similar values separated / dispersed from each other, which is called negative spatial autocorrelation.

Spatial distribution could indicate patterns of underlying process. Incidents exposed to the impact of similar process tend to follow similar locating pattern. Hence, study on spatial cluster could reveal information about the underlying geographical process that generates the spatial pattern, which can further aid the comprehension of underlying geographical process and its relationship with the phenomenon under investigation. Crime hot spot appears when crime occurrences impacted by environmental backcloth are spatially clustered. Investigating spatial pattern of crime could shed light on uncovering the secret veil of crime environmental backcloth (Boots et. al., 1988).

According to Wrigley et-al, (1996), there exist different methods for identifying and measuring spatial cluster. Spatial cluster analysis methods distinguish themselves from each other either because they are designed to answer different aspects of cluster questions (i.e. whether there exist clusters, where are the clusters, or to what intensity is the cluster), or because they are based on different philosophies to examine real world (i.e. observation scale, measurement of spatial separation, and subjectivity introduced during the interaction with data).

Onyeka (2007) pointed out that digital maps constitute the most effective means of presenting digital spatial data. The map could be an image map, a line map or a point map. Depending on the purpose, when the map is intended to serve a specific purpose, then a line map or point map may be preferred.

The objective of this paper to obtain coordinates of the schools, to create digital map showing the locations of the school, other is to determine their spatial distribution pattern using nearest neighbor analyzer statistical tool and finally to create database for the study area.

2. PROBLEM STATEMENT

Since the creation of Adamawa State, post primary schools have been established without considering how
these schools are distributed. Lack of map showing the distribution pattern of the schools in the study area has made it very difficult for people to see at a glance how these schools are spread. This has necessitated the need to have a map that will show the distribution pattern of the post primary schools in Yola North L.G.A of Adamawa State. Also, to my knowledge, the use of statistical analysis to determine how and where these schools are located has not been utilized.

3. THE STUDY AREA

3.1 Location and Extent

The study area covers Yola North local Government Area of Adamawa State.

The study area has the privilege of paved and earth roads as well as good drainage traversing some areas having proper water supply. Located between Latitude 9° 16' N - 9° 20' N and 12° 26' E - 12° 30' E (Encarta Encyclopedia 2007), the area has some major social/ recreational facilities as a state capital. Adamawa State of Nigeria is one of nine states created 27th August, 1991 out of Gongola State with Yola as its state capital. The state is located at the north eastern part of Nigeria around the area where the River Benue Enters Nigeria from Cameroon Republic.

3.2 Population and Land Use

According to 2006 population census provisional result, the Yola North has an estimate population of 307,714 people with an approximate land area of 1104.30km² with a radius 3.522km.

Majority of the population of Adamawa State settle in rural areas, which have been grouped into thirty seven districts made up of 478 settlements. The main urban centers are Jimeta, Yola Town, Mubi, Numan and Mayo-Belwa. The minor ones include Fufore, Ganye, Jada, Gombi, Maiha, Michika, Madagali, etc.

The main modes of land acquisition include inheritance, family, borrowing, gift, pledge lease and purchase. However land is also acquired through government allocation either at state or local government levels. Also traditional rulers nowadays cultivate the culture of designing a lay-out for allocation or selling to the citizens although with little effort of registration. Land capitalization is however a major problem of agricultural development in Adamawa State. This involves acquisition of thousand of hectares of land by refined wealthy Nigerians for large scale commercial agriculture.

3.3 Climate

The study area lies within the Sudan savannah zone with marked dry and wet seasons. There used to be gradual increase in temperature from the months of January to April with the seasonal maxima which normally occurs in April. Temperature drops in the rainy season especially in the month of July to October. The movement of the inter-tropical discontinuity (I.T.D.), and associated zones of rainfall during the course of the year, is the major factor controlling rainfall and temperature variation in the study area. Temperature rises slightly after the rainfall ceases in the months of March-May and that could reach as high as 41°C. In the months of December-February, the dry harmattan weather characterizes the area, which is cold and dusty. The movement of the wind by December sweeps across the study area and the movement continue eastward.

3.4 Soil and Vegetation

Like most areas in northern Nigeria, the soil of Yola-North are derived from the basement complex rock, however, there is some alluvial soil along the Benue flood plains. The soil of the study area is loamy and it drains easily when it rains. The vegetation consists of short, medium and shrubs, more especially in the months of August and September during which the area records higher amount of rainfall.

3.5 Relief and Drainage

River Benue is the major river in the study area. It rises from the highlands of Cameroon republic and flows south wards into Nigeria joining the river Niger at Lokoja. The state covers a land area of about 39, 742, 13 sq km, and is full of mountainous land forms that includes Numan plains. The state is also characterized by undulating Hills, rolling landscapes in the south and west and several rocky highlands in the east. The River Benue, which is the main river flows all year round with the peak in the months of August-October in the wet season. Some of the tributaries that drain into the Benue are Mayo Ine, Faro, Chouchi and Rugange which are all seasonal streams.
MAP OF NIGERIA SHOWING ADAMAWA STATE
Source: Ministry of Land and Survey, Yola (2009)
4. METHODOLOGY

4.1 General Statement

This chapter focuses on the fundamental methods and procedure adopted in this study. Political map of Adamawa state showing local government boundaries is obtained. With the use of GPS, coordinates of post-primary schools were picked. This section can be referred as the overall configuration of a piece of research work. This is to cover the study area, instrumentation, validity and reliability of instrument, method of data collection, data processing, analysis and presentation of result.

4.2 Instrumentation

The instruments used are classified as:

1) Hardware
 i. Computer Laptop (specification: 140 GB hard disk, 1G RAM, DUO CORE Processor)
 ii. Garmin 60, hand held Global Positioning System (GPS);
 iii. Scanner (HP Scan jet 5300c);
 iv. Printer (HP Printer DeskJet 710c)

2) SOFTWARE
 i. Integrated Land and Waters Information System (ILWIS)
 3.1 GIS package.
 ii. Arc view GIS, version 3.2a

MATLAB2009a programming software.

4.3 Data Acquisition

In this paper, two types of data were involved namely:
Spatial data and Attribute data
4.3.1 Spatial Data

Coordinates of the existing schools was collected through field survey using proMark-3 GPS instrument. Analogue map of Nigeria, Adamawa and the study area was obtained from Ministry of land and survey, Yola.

4.3.2 Attribute Data

The attribute data was obtained from the various schools through verbal interaction which includes the following:

1. Names of the existing schools
2. Names of the places where they are Located
3. Area of the schools
4. Owners of the schools
5. Total enrolment of the schools
6. Number of classrooms each school has, etc.

4.4 Data Quality

The quality of data used in any surveying work can be determined by the validity and reliability of such data. The validity of the data is measured by the precision of the instrument used and the reliability of the data is determined by the accuracy of the data. Therefore it can be agreed that the instrument to be used for data collection is reliable and the person to carry out the observation has the required experience to do the field work (Idowu, 2005).

The basic data to be used for this study are the GPS observed coordinates of the institutions, which is to be used in analyzing the distribution pattern of the schools. Subsequent to the identification of user’s data need and collection, sourcing for the identified data was commenced. The coordinates of the various institutions was collected using GPS instrument by the researcher. The spatial data was derived from analogue map of Adamawa state. The map is obtainable at the Ministry of Land and Survey, Yola. While the source of the attribute data was provided by the vice principal, administration of each school.

4.5 Spatial Analysis

A spatial analysis was performed on the set of the data acquired from the GPS. The coordinates (X, Y) of the schools was used to determine the distances from each point to its Neighbors, and the distances were then used in determining the distribution pattern of these schools. For the purpose of this work, the researcher uses the Nearest Neighbor Analyser (NNA) statistical tool.

4.6 Nearest Neighbour Analyser (NNA)

NNS= Nearest Neighbor Statistics

\[R_n = \frac{D_m}{D_e} \] \hspace{1cm} (4)

\[D_m = \text{Observed mean distance in areas under consideration.} \]

\[D_e = \text{Expected mean distance.} \]

\[D_e = \frac{1}{\sqrt{P}} \] \hspace{1cm} (5)

Where \(P \) = density of points in A, i.e number of points per unit area.

\[P = \frac{n}{A} \] \hspace{1cm} (6)

\[R_n = 2D_m \sqrt{\frac{n}{A}} = 2D\sqrt{P} \] \hspace{1cm} (7)

Where \(n \) = number of points in the area concerned

\[0 < R_n < 2.15 \] \hspace{1cm} (8)

The following results will be arrived at the end of the analysis, which will be considered to determine the pattern of distribution of these schools within the study area, the value of \(R_n \) after the analysis will be:

\[R_n = 0 \] implies that the distribution of points is clustered

\[R_n = 1 \] implies that the distribution of points is random

\[R_n = 2.15 \] implies that the distribution of points is Regular.

Finally, test of significance of \(R_n \) will be carried out using the following

Formulae:

\[\sigma^2_e = \left(\frac{0.26136}{\sqrt{NP}} \right)^2 \] \hspace{1cm} (9)

\(N \)= Number of measurements of distances between pairs of points.

\[Z = \frac{D_e - D_m}{\sigma_e} \] \hspace{1cm} (10)

Nearest neighbor analysis examines the distances from each point and the closest point to it, and then compares it to expected values for a random sample of points from a CSR (complete spatial randomness) pattern.

4.7 Using GPS For Position Fix

GPS is to be switch on using the power button (key) which will be pressed and hold for about 2 seconds, status page would appear while the GPS acquires satellite. As
sufficient satellite signals have been acquired, the status page will be replaced by the position page. Press mark to capture a position, press ENTER to confirm. The lower left hand corner of the page (position) shows your current latitude and longitude in degrees.

When the receiver is looking for a particular satellite, the corresponding signal strength bar will be blank and the sky view indicator will be highlighted. Once the receiver has found the satellite, a hollow signal strength bar will appear, indicating that the satellites have been found and the receiver is collecting data from it. The satellite number in the sky view will no longer appear highlighted. As soon as the GPS has collected the necessary data to calculate a fix, the status field will indicate a 20 or 20 status. Marking a position allows you to mark and store up positions by pressing MARK. The mark position page will appear, showing the capture position and a default three digit name. To save a default name and symbol, press ENTER to confirm the “SAVE”.

4.7.1 Scanning

The data (analogue maps) are converted to digital through image scanning. The common way to capture paper maps into digital format is to use a format resolution scanner. A scanner uses a light-sensitive device to detect monochrome, 'Grey scale or color reflectance from a map and produce a raster at fixed resolution.

However, a scanner was used to convert the map into digital form; the details on the analogue map was captured and stored in a file.

4.7.2 Geo-Referencing

Geo-referencing refers to the location of a layer or coverage in space as defined by a known coordinate reference system, such as UTM rectangular grid coordinate (x, y) or geographical coordinate latitude and longitude (φ, λ). If the map is not geo-referenced you cannot see real terrain coordinate (real world coordinate).

4.7.3 Creation of Coordinate System

The maps that are obtained after importing a digital format, attention is paid to the maps system of projection so as data input are made to be compatible (i.e. all digitize maps and GPS coordinates to be of same Reference system). Option is made by either user defined coordinates or coordinates of certain UTM zone.

4.7.4 Map Processing

The map was processed using ILWIS 3.1 and ARCHVIEW 3.2a GIS packages. The rectangular coordinates (X, Y) of the schools obtained was used to determine the distances of the pair schools in the study area. The distances calculated were then used to determine the spatial distribution pattern of the schools using Nearest Neighbor Statistical tool.

4.8 Creation of Database of the Schools

The digital map produced was exported into GIS software (Arc view 3.2a) in order to produce the required database. The individual layers after exporting was saved as dxf files format, bearing the names of the types of the features they contained. This gave the number of the layers equal to the number of the files that were saved.

Arc view then created a table automatically for each theme and related each of the rows/records to its corresponding point, arc or polygon as the case may be depending on the features contained in each theme. In this study, the table concern was created as the schools table. Hence the parcel theme was brought in to the Arc view environment as a polygon theme.

4.9 Table Creation

The table for the schools was created as explain above. The creation of the tables involved editing the schools table so created. This involves deleting unwanted columns and creating new columns of interest.

The new columns of interest were the resultant normalized tables. The attribute table created was shown below.

4.9.1 Spatial Query

The spatial database generated can be queried either by location or by attribute. The query builder in the Arc view was used to build several queries to test its authenticity. Some examples of the queries carried out include:

1. Show all the schools owned by the Government.
2. Show all the schools that were established in year 2000
3. How many schools have an enrolment over 500 pupils
4. How many schools are owned by religious bodies

The query builder command/icon was used to raised the queries and also the identify tool was also used to raise some of the answers by double clicking on any of the points.

Table 1: Presentations and Analysis of Results
<table>
<thead>
<tr>
<th>S/N</th>
<th>Abbreviation</th>
<th>Full Name</th>
<th>Easting Coordinates</th>
<th>Northing Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GBBJSS</td>
<td>Govt. Boys Junior Boarding Sec. Sch. Demsawo, Jimeta</td>
<td>218036.291</td>
<td>1026809.156</td>
</tr>
<tr>
<td>2</td>
<td>St Peters</td>
<td>ST. Peters Seminary, Yola</td>
<td>218910.000</td>
<td>1025580.000</td>
</tr>
<tr>
<td>3</td>
<td>Light of Life</td>
<td>Light of Life Academy, Jimeta.</td>
<td>218584.000</td>
<td>1025527.000</td>
</tr>
<tr>
<td>4</td>
<td>Bekaji</td>
<td>Govt. Day Junior Sec. Sch. Bekaji.</td>
<td>219260.000</td>
<td>1024691.000</td>
</tr>
<tr>
<td>5</td>
<td>Kay Academy</td>
<td>Kay Academy, Karewa</td>
<td>219094.000</td>
<td>1023206.000</td>
</tr>
<tr>
<td>6</td>
<td>SÜBER</td>
<td>Suher International School. Jimeta.</td>
<td>220853.000</td>
<td>1025212.000</td>
</tr>
<tr>
<td>7</td>
<td>SUCCESS</td>
<td>Private Success International School. Bekaji</td>
<td>218944.000</td>
<td>1025217.000</td>
</tr>
<tr>
<td>8</td>
<td>EL-SHADDAI</td>
<td>El-Shaddai Model School, Yola.</td>
<td>218800.000</td>
<td>1025262.000</td>
</tr>
<tr>
<td>9</td>
<td>CONCORDIA</td>
<td>Concordia College. Jimeta.</td>
<td>218503.000</td>
<td>1024465.000</td>
</tr>
<tr>
<td>10</td>
<td>KAREWA</td>
<td>Govt. Day Sec. Sch. Karewa</td>
<td>219320.000</td>
<td>1023070.000</td>
</tr>
<tr>
<td>11</td>
<td>NADI</td>
<td>NADI International School</td>
<td>221612.000</td>
<td>1022440.000</td>
</tr>
<tr>
<td>12</td>
<td>FCE Model</td>
<td>FCE Model Sec. Sch. Yola</td>
<td>222085.000</td>
<td>1023722.000</td>
</tr>
<tr>
<td>13</td>
<td>GGYOLA</td>
<td>Govt. Girls Sec. Sch. Yola, Dougirei</td>
<td>221641.000</td>
<td>1024087.000</td>
</tr>
<tr>
<td>14</td>
<td>GMMC</td>
<td>General Murtala Mohammed College, Yola</td>
<td>219724.000</td>
<td>1023364.000</td>
</tr>
<tr>
<td>15</td>
<td>YELWA</td>
<td>Yelwa Govt. Day Junior Sec. Sch.</td>
<td>220173.000</td>
<td>1026784.000</td>
</tr>
<tr>
<td>16</td>
<td>RUMDE</td>
<td>Govt. Day Junior Sec. Sch. Rumde ward. Jimeta</td>
<td>220361.000</td>
<td>1027335.000</td>
</tr>
<tr>
<td>17</td>
<td>UCAIE</td>
<td>Usmaniyya College for Arabic and Islamic Education, Demsawo.</td>
<td>218446.851</td>
<td>1027056.159</td>
</tr>
<tr>
<td>18</td>
<td>Demsawo</td>
<td>Govt. Junior Sec. Sch. Demsawo.</td>
<td>218235.479</td>
<td>1026997.667</td>
</tr>
<tr>
<td>19</td>
<td>LUGGERE</td>
<td>Govt. Day Sec. Sch. Luggere</td>
<td>219469.833</td>
<td>1025711.467</td>
</tr>
<tr>
<td>20</td>
<td>AMA</td>
<td>Aliyu Mustafa Academy, Upper Luggere. Jimeta.</td>
<td>219326.772</td>
<td>1025839.572</td>
</tr>
<tr>
<td>21</td>
<td>HICAIE</td>
<td>Hayatu Iyawa College for Arabic and Islamic Education, Luggere. Jimeta.</td>
<td>218884.812</td>
<td>1025983.700</td>
</tr>
<tr>
<td>22</td>
<td>CAPITAL</td>
<td>Bisma’u Capital Govt. Day Sec. Sch. Jimeta.</td>
<td>217811.960</td>
<td>1026348.906</td>
</tr>
<tr>
<td>23</td>
<td>Jambutu</td>
<td>Govt. Day Sec. Sch. Jambutu</td>
<td>216611.348</td>
<td>1027948.076</td>
</tr>
<tr>
<td>24</td>
<td>Wisdom</td>
<td>Jambutu Wisdom Academy.</td>
<td>216724.515</td>
<td>1027410.951</td>
</tr>
<tr>
<td>25</td>
<td>BOSCO</td>
<td>BOSCO Comprehensive School. Jambutu.</td>
<td>217088.995</td>
<td>1027119.250</td>
</tr>
<tr>
<td>26</td>
<td>DOUBELI</td>
<td>Doubeli Govt. Day Sec. Sch. Jimeta</td>
<td>219948.044</td>
<td>1027150.322</td>
</tr>
<tr>
<td>27</td>
<td>GWADABAWA</td>
<td>Govt. Day Sec. Sch. Gwadabawa. Jimeta.</td>
<td>221346.534</td>
<td>1026472.561</td>
</tr>
<tr>
<td>28</td>
<td>LADI ATIKU</td>
<td>Ladi Atiku Govt. Girls Junior Sec. Sch. Jimeta</td>
<td>220986.792</td>
<td>1025371.282</td>
</tr>
<tr>
<td>29</td>
<td>OLD GRA</td>
<td>Govt. Junior Sec. Sch.</td>
<td>220707.376</td>
<td>1025109.345</td>
</tr>
<tr>
<td>30</td>
<td>IQRA</td>
<td>IQRA Academy. Jimeta. Yola</td>
<td>220729.084</td>
<td>1024973.000</td>
</tr>
<tr>
<td>31</td>
<td>GGJBSS</td>
<td>Govt. Girls Boarding junior Sec. Sch. Dougirei.</td>
<td>221641.000</td>
<td>1024087.000</td>
</tr>
</tbody>
</table>
5. PRESENTATION OF RESULTS

The Result of the data collected and analysis carried out were presented in the tables and figures below. Table 1 below shows the Names and the coordinates of the various schools found within the study area.

The following program was used to compute the distances from each school to its neighbors. These distances obtained were used in carrying out the nearest neighbor analysis.

```matlab
clear all; close all; clc
cd '/Users/imuhammad/ Desktop'
load schoolscoord.txt
E=schoolscoord(:,2)
N=schoolscoord(:,3)

Set condition
if nargin >2, disp('wrong data entry'), return, end

if length(E) ~= length(N),
    disp('data incomplete or in wrong column order')
    return
end

clear d1 d2 d3 d4 d5 d6 d7 d8
for q=1:2
d1(q)=sqrt( ( g1(q+1,1) -g1(1,1) )^2 + ( g1(q+1,2) -g1(1,2) )^2 )
end

g2=[E(1) E(22) E(17) E(18); N(1) N(22) N(17) N(18) ]';
for q=1:3
    d2(q)=sqrt( ( g2(q+1,1) -g2(1,1) )^2 + ( g2(q+1,2) -g2(1,2) )^2 )
end

for q=1:6
    d3(q)=sqrt( ( g3(q+1,1) -g3(1,1) )^2 + ( g3(q+1,2) -g3(1,2) )^2 )
end

g4=[E(9) E(4); N(9) N(4) ]';
d4=sqrt( ( g4(2,1) -g4(1,1) )^2 + ( g4(2,2) -g4(1,2) )^2 )
```
Table 2: Analysis of the distribution of the Schools

<table>
<thead>
<tr>
<th>School No.</th>
<th>Nearest Neighbor</th>
<th>Distance= D(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>507.8762</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>421.7978</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>416.9832</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>790.0158</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>381.7085</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>232.9255</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>441.1251</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>325.3852</td>
</tr>
<tr>
<td>9</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>3517.8173</td>
</tr>
</tbody>
</table>
From Equation (4), the nearest neighbor statistics is given as:

\[R_n = 2D_m \sqrt{\frac{n}{A}} = 2D_m \sqrt{P} \]

\[D_m = \frac{3517.8173}{10} = 351.7817\text{m} \]

\[n= 10 \]

\[A= 4,000,000\text{m}^2 \]

\[P = \frac{10}{4,000,000} = 0.0000025 \]

\[R_n = 2(351.7817)\sqrt{0.0000025} \]

\[R_n = 2(351.7817) \times 0.00158 \]

\[R_n = 703.5634 \times 0.00158 \]

\[R_n = 1.1124 \]

From eqn. (5) and the value of \(R_n \), the distribution of schools in Yola North LGA is random.

5.1 Test of Significance Of \(R_n \)

\(H_0 \): If \(Z < Z_{\alpha} \), then \(R_n \) is significant

\(H_1 \): To reject \(H_0 \)

From eqn. (6), we have

\[\sigma^2_{De} = \left(\frac{0.26136}{\sqrt{P}} \right)^2 \]

\[\sigma^2_{De} = \left(\frac{0.26136}{\sqrt{21 \times 0.0000025}} \right)^2 \]

\[\sigma^2_{De} = \left(\frac{0.26136}{0.0000525} \right)^2 \]

\[\sigma^2_{De} = \left(\frac{0.26136}{0.00725} \right)^2 \]

\[\sigma^2_{De} = 1366.4852 \]

From eqn. (7)

\[Z = \left(\frac{D_e - D_m}{\sigma^2_{De}} \right) \]

Where:

\[D_e = \frac{1}{2\sqrt{P}} \]

\[D_e = 316.2278 \]

Therefore,

\[D_m = 351.7817 \]

\[D_e = 316.2278 \]

\[\sigma^2_{De} = 1366.4852 \]

Then:

\[Z = \left(\frac{316.2278 - 351.7817}{1366.0496} \right) \]

\[Z = \left(\frac{-35.5539}{1366.0496} \right) \]

\[Z = -0.02603 \]

Taken

\[\alpha_{90\%} = \alpha_{0.05} \]

\[Z_{\alpha_{0.05}} = 0.5199 \]

Since \(Z < Z_{\alpha} \), we accept \(H_0 \) that \(R_n \) is significant.

The Ownership of the schools in percentage was presented in the Pie chart and table below:

![Figure 1.1: Pie chart showing the percentage of the ownership of the schools](image)

Table 3: Showing the number of schools and their percentage

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Number of schools</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td>1</td>
<td>3.23%</td>
</tr>
<tr>
<td>State</td>
<td>17</td>
<td>54.84%</td>
</tr>
<tr>
<td>Private</td>
<td>9</td>
<td>29.03%</td>
</tr>
<tr>
<td>Religious Body</td>
<td>4</td>
<td>12.09%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>31</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 1.2: showing the attribute table of the schools

<table>
<thead>
<tr>
<th>School</th>
<th>ID</th>
<th>School Name</th>
<th>Location</th>
<th>Ownership</th>
<th>City</th>
<th>Year_estab</th>
<th>Lang_mother</th>
<th>Teaching_e</th>
<th>Name_teach</th>
<th>Form_enrol</th>
<th>Num_enrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>1</td>
<td>Kenya GPA</td>
<td>Karama GPA</td>
<td>Government</td>
<td>State</td>
<td>1960</td>
<td>46</td>
<td>6</td>
<td>598</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>2</td>
<td>Kaps Academy</td>
<td>Karama GPA</td>
<td>Private</td>
<td>M.16</td>
<td>1966</td>
<td>24</td>
<td>14</td>
<td>600</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>3</td>
<td>GKMSC Yida</td>
<td>Government</td>
<td>State</td>
<td>1960</td>
<td>132</td>
<td>48</td>
<td>24</td>
<td>247</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>4</td>
<td>GDSSS, Baha</td>
<td>Belait Housing</td>
<td>Government</td>
<td>State</td>
<td>2009</td>
<td>41</td>
<td>21</td>
<td>400</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>5</td>
<td>Ghorma College</td>
<td>Karama new area</td>
<td>Private</td>
<td>BFM GH</td>
<td>1961</td>
<td>59</td>
<td>105</td>
<td>522</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>6</td>
<td>ESHS Shabaan</td>
<td>Beside 75 strike</td>
<td>Private</td>
<td>W. N. Steph</td>
<td>1966</td>
<td>31</td>
<td>5</td>
<td>1675</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>7</td>
<td>Private Success</td>
<td>Behind NMC Mega</td>
<td>Private</td>
<td>W. N. Zohe</td>
<td>2016</td>
<td>16</td>
<td>10</td>
<td>172</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>8</td>
<td>GDSSS, Lantau</td>
<td>New York, LA</td>
<td>Government</td>
<td>State</td>
<td>2004</td>
<td>38</td>
<td>5</td>
<td>475</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>9</td>
<td>Wisdon Academy</td>
<td>Opposite Sangana</td>
<td>Private</td>
<td>J. W. and M. T.</td>
<td>1999</td>
<td>20</td>
<td>4</td>
<td>450</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>10</td>
<td>BOSCO Comprehensive</td>
<td>Lantau, LA</td>
<td>Private</td>
<td>M. M. and D. O.</td>
<td>2003</td>
<td>22</td>
<td>3</td>
<td>276</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>11</td>
<td>Capital GDSSS</td>
<td>Alfrag Numar Road</td>
<td>Government</td>
<td>State</td>
<td>1992</td>
<td>80</td>
<td>15</td>
<td>1795</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>12</td>
<td>BDSISS, D奥斯man</td>
<td>D осman, ju</td>
<td>Government</td>
<td>State</td>
<td>2004</td>
<td>16</td>
<td>4</td>
<td>138</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>13</td>
<td>GiSSS, D奥斯man</td>
<td>D осman, ju</td>
<td>Government</td>
<td>State</td>
<td>2004</td>
<td>46</td>
<td>4</td>
<td>739</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>14</td>
<td>Umaraj DAE</td>
<td>No. 3, D奥斯man</td>
<td>Private</td>
<td>Amin B. Hamman</td>
<td>1996</td>
<td>25</td>
<td>4</td>
<td>440</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>15</td>
<td>Light of Life Ac</td>
<td>Behind D осman</td>
<td>Religious Body</td>
<td>Upper Room</td>
<td>2014</td>
<td>17</td>
<td>3</td>
<td>73</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>16</td>
<td>ST. Peter's Corn</td>
<td>Gallafar Corn</td>
<td>Religious Body</td>
<td>Catholic Bishop</td>
<td>1965</td>
<td>15</td>
<td>10</td>
<td>215</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>17</td>
<td>Hayatullah Ac</td>
<td>Upper Corn</td>
<td>Religious Body</td>
<td>J-World, Asman</td>
<td>2003</td>
<td>40</td>
<td>5</td>
<td>648</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>18</td>
<td>Alp Azad Ac</td>
<td>Balace Street</td>
<td>Private</td>
<td>B. M. A.</td>
<td>1984</td>
<td>70</td>
<td>21</td>
<td>2459</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>19</td>
<td>GDSSS, Liegoa</td>
<td>Balace street</td>
<td>Government</td>
<td>State</td>
<td>1992</td>
<td>32</td>
<td>16</td>
<td>530</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>20</td>
<td>GDSSS, Doubai</td>
<td>Alka, Abulak</td>
<td>Government</td>
<td>State</td>
<td>1980</td>
<td>75</td>
<td>15</td>
<td>1800</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>21</td>
<td>Yorina GDSS</td>
<td>Yorina ward, Jie</td>
<td>Government</td>
<td>State</td>
<td>2008</td>
<td>63</td>
<td>0</td>
<td>795</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>22</td>
<td>GSSS, Bandoe</td>
<td>Kachin, Jie</td>
<td>Government</td>
<td>State</td>
<td>2004</td>
<td>85</td>
<td>2</td>
<td>977</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>23</td>
<td>GDSSS, Gwadaboa</td>
<td>M. street, D. San</td>
<td>Government</td>
<td>State</td>
<td>1994</td>
<td>85</td>
<td>12</td>
<td>649</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>24</td>
<td>Lass Amn, GDSS</td>
<td>Naps road, D. D. San</td>
<td>Government</td>
<td>State</td>
<td>2004</td>
<td>45</td>
<td>3</td>
<td>374</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>26</td>
<td>GISSS, DNM GPA</td>
<td>Naps road</td>
<td>Government</td>
<td>State</td>
<td>2004</td>
<td>41</td>
<td>0</td>
<td>495</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>27</td>
<td>IDRA Academy</td>
<td>Naps road, Jie</td>
<td>Religious Body</td>
<td>FON VAX, Asman</td>
<td>1992</td>
<td>64</td>
<td>15</td>
<td>673</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>28</td>
<td>GDSSS, Yida</td>
<td>DLN GPA, Jie</td>
<td>Government</td>
<td>State</td>
<td>1993</td>
<td>112</td>
<td>45</td>
<td>2274</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>29</td>
<td>GDSSS, Yida</td>
<td>DLN GPA, Jie</td>
<td>Government</td>
<td>State</td>
<td>2004</td>
<td>11</td>
<td>1</td>
<td>226</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>30</td>
<td>Model Sec. Sch</td>
<td>FADU, Jie</td>
<td>Government</td>
<td>Federal</td>
<td>2007</td>
<td>28</td>
<td>0</td>
<td>276</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>31</td>
<td>NAB INT. School</td>
<td>Dabinie, Jie</td>
<td>Private</td>
<td>Hajar Djia Bae</td>
<td>2006</td>
<td>13</td>
<td>3</td>
<td>51</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The results of all the queries above were shown in the figures below:

![Fig. 1.3: showing the result of query 1](image-url)
The yellow color displays all the schools owned by government.

![Fig. 1.4: showing the result of query 2](image)

The yellow color displays all the schools that were established in year 2000.

![Fig. 1.5: showing the result of query 3](image)
The yellow color displays all the schools that have enrolment over 500 pupils.

Fig 1.6 showing the result of query 4

The yellow color displays all the schools that were owned by religious bodies.

Fig 1.7: showing query using identify tool
6. CONCLUSION

The study clearly depicts the process of using Nearest Neighbor analysis in determining the distribution pattern of the post-primary schools. The study reveals how the schools were located on a digital map and the value of R_n shows that random pattern of distribution exists within the study area. The potentials of GIS technology in database design and creation has also been demonstrated and found to be more efficient than the manual approach. The database created shows at a glance how the attribute and spatial data were connected. Some of the queries carried out show the capabilities of the GIS in manipulating data to solve environmental problems. Since the distribution pattern of post primary schools in Yola north L.G.A is random, students would find it hectic to travel long distances to attend some of the day schools. This may result in financial implications that some of the students may not even attend school.

RECOMMENDATIONS

Based on the analysis of result, research findings and conclusion of this study, the following recommendations were made.

1. Nearest Neighbor Analysis is recommended for determination of spatial distribution pattern of schools, since it shows clearly how these schools are distributed.
2. The Government should use the findings as a guide together with their policies in establishing schools.
3. Writing a computer program should be encouraged in calculating distances from coordinates using a programming language especially MATLAB.
4. That all the remaining local governments should determine the location and distribution of their post-primary schools using Nearest Neighbor Statistical tool.
5. That the creation of database to show at a glance all the information of the post primary schools is recommended.
6. Further research should be carried out to improve on this work.

REFERENCES