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ABSTRACT 
 

We present a predictive rainfall model based on fitting a Generalized Linear Model on monthly rainfall amounts with factors 

and covariates that determine the occurrence and persistence of the gravitational atmospheric tide state. The model 

demonstrates high skill while estimating monthly amounts by achieving a correlation coefficient above 0.7 between the 

estimates and the measurements. Model estimates of annual total for the period 1901 to 2020 indicate that the model may not 

only be used to estimate historical values of rainfall but also predict monthly rainfall amounts. The advantage of atmospheric 

tidal factors and their derivatives is that their future values are obtained accurately in advance. 
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1. INTRODUCTION 

 

An analysis carried out by Li of time variations of the 

earth’s length of day (LOD) versus atmospheric 

geopotential height fields and lunar phase showed that a 

strong correlation is found between LOD and geopotential 

height from which a close relationship is inferred and 

found between atmospheric circulation and the lunar cycle 

around the earth. It was found that there is a 27.3-day and 

13.6-day east-west oscillation in the atmospheric 

circulation following the lunar phase change. The lunar 

revolution around the earth strongly influences the 

atmospheric circulation. During each lunar cycle around 

the earth there is, on average, an alternating change of 

6.8-day-decrease, 6.8-day-increase, 6.8-day-decrease and 

6.8-day-increase in atmospheric zonal wind, atmospheric 

angular momentum and LOD. The dominant factor 

producing such an oscillation in atmospheric circulation is 

the periodic change of lunar declination during the lunar 

revolution around the earth. The 27.3-day and 13.6-day 

atmospheric oscillatory phenomenon is akin to a strong 

atmospheric tide, which is different from the weak 

atmospheric tides, diurnal and semidiurnal, previously 

documented in the literature. Also it is different from the 

tides in the ocean in accordance with their frequency and 

date of occurrence. Estimation shows that the 27.3-day 

lunar forcing produces a 1–2 m s−1 change in 

atmospheric zonal wind. [Li, 2005] 

 

As early as 1962, Brier and Bradley identified a 14.765 

day cycle in precipitation data for the United States during 

the period 1871-1961 and made estimation for the lunar-

solar effect on the rainfall variability by means of 

statistical analysis. Although no attempt was made at that 

time to give meteorological interpretation of the findings, 

they were convinced that the lunar solar effect was a 

significant factor in the distribution [Bradley et al, 1962], 

[Brier and Bradley, 1964], [Brier, 1965]. In 1995 Keeling 

and Whorp presented a paper proposing that extreme 

ocean tides may produce variation in sea surface 

temperatures. They proposed that dissipation of extreme 

tides increased vertical mixing of sea water, thereby 

causing episodic cooling near the surface. [Keeling and 

Whorp,1997].They followed the argument in 2000 by 

proposing that the 1800 year cycle is a possible cause of 

rapid climate change. [Keeling and Whorp, 2000]. Treloar 

in 2002 observed that lunar-solar effect produce important 

perturbations which he resolved into two orthogonal 

directions. Through time-series analysis, he found that 

there existed significant correlation between Southern 

Oscillations and sea-surface temperatures with these 

components. [Treloar, 2002]. In 2008 Yndestad et al used 

wavelet spectrum analysis to obtain correlations better 

than 0.7 between Atlantic water temperature cycles and 

the 18.6-year lunar nodal cycle. They suggested that 

deterministic lunar nodal tides are important regional 

climate indicators that should be included when future 

regional climate variability is considered. [Yndestad et al, 

2008]. 

 

In this paper we demonstrate that monthly rainfall can be 

successfully modeled using factors and covariates derived 

from time variation of the solar-lunar geometry. We have 

used a Generalized Linear Model to fit monthly rainfall 

for the period 1951-1980 and to make a projection of 

monthly totals for the period 1901-2020. 

 

2. METHODS 

 

Climate Research Unit (CRU) of the University of East 

Anglia, UK, provides research datasets for the Kenya 

country region. We have extracted monthly total rainfall 
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totals for the period 1901–2000. The country aggregation 

is based on the CRU TS 2.0 gridded data-set. The gridded 

data were aggregated into countries using political 

boundaries according to Mitchell Hulme et al [Mitchell, 

T. D., et al, 2002]. The data referred to here as 

CRUKenya. Kenya Meteorological Department (KMD), 

Dogoretti Nairobi availed the rainfall data taken at 

Dogoretti and Jomo Kenyatta Airport stations from 1959 

to 2005. The data is rain gauge measurements taken at the 

stations over the period and it is named KenMet data. 

[KenMet, 2005]. CRUKenya has been analysed and the 

results compared with KenMet data. National Aeronautics 

and Space Administration (NASA) provided solar and 

lunar declination values. These were obtained from 

ephemeris available at NASA and the values have been 

used to compute factors describing the relative magnitude 

and frequency of gravitational atmospheric tides during 

the period 1901 to 2050 over Nairobi. [Horizons, 2013]. 

The factors were then used as explanatory variables in a 

statistical model in which monthly rainfall is the response 

variable. 

 

3. LITERATURE REVIEW 
 

3.1 Exponetial Dispersion Model (EDM) 

 

We assume that monthly rainfall follows one of the 

standard exponential dispersion family of distributions 

and we will therefore be an Exponential Dispersion 

Model (EDM). EDMs have a probability density function 

or a probability mass function, which can be written in the 

following form [Gill, 2001]; 

 

p(y,θ, ø,) = a(y,ø) exp {
 

 
          }               (2.1) 

 

where ø > 1 is the dispersion parameter; μ is the position 

parameter and μ = k(ø); y is the monthly rainfall amount 

and   is the canonical parameter. y does not depend on 

the parameters θ, and ø. The notation y ~ ED(μ, ø) 

indicates that a random variable y comes from the EDM 

family, with location parameter μ and dispersion 

parameter ø, as in equation (2.1). A Generalised Linear 

Model (GLM), satisfies two conditions: the first condition 

is that it is an Exponential Distribution Model in which 

each response variable ie yi ~ ED(μi, ø/wi). The value of 

prior weights wi is 1 and the second is that the expected 

values of the yi, say μi, are related to the covariates xi 

through a monotonic differentiable link function, g(·). The 

link function, g(.) is the one to be determined by fitting so 

that 

 

g(μi)= β xi
T                  (2.2) 

 

and 

 

yi = β xi
T+ei                  (2.3) 

is a linear function, hence the name –generalized linear 

model. and ei are the random residues (errors in 

estimating yi). [Tweedie, 1984]. In this study we use only 

first order factors so that T=1 and the Tweedie 

distribution of the form; 

 

     
                 

     
            

                                                                     (2.4) 

 

yi is a time series of monthly amounts from so that yi = yt 

= y1, y2, y3, ...., yt. Similarly, X is a TxN matrix of factors 

(predictors) in which each column represents a time series 

of each factor so that X=x11, x 12, ...., x nt, where N=1,2,3, 

...., n, the number of factors and covariates. and T=1,2,3, 

...., t. The fitting process involves obtaining values of β 

which linearizes the equation;  ̂   βX.   ̂ are the estimates 

within fit errors (residues) et. Hence  ̂ = β0+βX+et. where 

β=β1, β2, β3, ....., βn. β0 is the intercept and β1, β2, ...., βn 

are the beta values. The predictors used are described in 

section 2.3. It is then possible to do the matrix 

multiplication and obtain the time series of monthly 

estimates; 

 

 ̂t = β0 +β1 x 11+β2 x 12+.............+βn x nt+et               (2.5) 

 

The Tweedie Family is the family of Exponential 

Dispersion Models (EDMs) distributions is characterized 

by the power mean-variance relationship: 

 

V(μ) = μp                  (2.6) 

as seen in (2,4). 

 

To specify the Tweedie, the mean, μ the dispersion 

parameter,   and the variance power, p are required. 

Standard algorithms are used to work out μ and Maximum 

Likelihood Estimate (MLE) is used to work out   and p. 

A GLM fit on the rainfall distribution obtains the beta 

values used to calculate monthly rainfall estimates. 

 

3.2 Factors 

 

In this section we discuss how the eight predicting factors; 

sdec, ldec, atide, etide, synod, mld, perigee and apogee 

have been obtained from solar-lunar geometry. The 

factors are chosen because they primarily influence the 

gravitational excitation potential of the moon and that of 

the sun on the atmosphere. We consider Figure 1 where 

O, C and S denote the centers of the earth, moon and sun 

respectively and P is the point of gravitational excitation 

in the atmosphere close to the earth surface. OE is along 

the Equator. Solar and lunar declinations (sdec and ldec) 

are the angles EOS and EOC respectively. The angle, as 

measured from the equator and is positive when the target 

(sun or moon) is in the Northern (+) and negative in the 

southern (-) hemisphere. 



International Journal of Science and Technology (IJST) – Volume 2 No. 6, June, 2013 

 

IJST © 2013 – IJST Publications UK. All rights reserved.  448 

 

 

 
 

Figure 1. Geometry for calculation of tidal potentials 
 

When we consider the tidal potential due the moon, 

 =    , P is a point near the earth’s surface. N denotes 

the North Pole. The potential of the attraction of C at 

point P is γM/L, where M denotes the mass of C and γ the 

gravitation constant. [Lindzen and Chapman, 1969]. The 

local excitation        may be written; 

 

          
  

                                   (2.7) 

 

where a=OP=earth radius, D=OC=earth-moon distance. 

 

It is the acceleration at P relative to the earth that 

produces tides. The potential associated with the 

acceleration of the earth as a whole is 

 
  

                         (2.8) 

 

so that the excitation is maximized when   =0 and that P 

is on OC. Subtracting this from (2,8 above ) we get 

 

        
  

                    
  

                       (2.9) 

 

Expanding (2,9) in powers of (a/D), and retaining only the 

first term, we get 

 

         
 

 
 
     

    (
 

 
      )              (2.10) 

 

An equivalent equation for the solar gravitation excitation 

is obtained by replacing the value of M by the mass of the 

sun. Thus the excitation is inversely proportional to the 

cube of the lunar or solar distance and is maximum when 

   . 

 

In this study an atmospheric tide state, atide occurs 

whenever O, C and S are co-linear or nearly collinear. O 

C and S were taken to be nearly collinear if the magnitude 

of the difference between sdec and ldec is less than 2 

degrees.  At that time the atmospheric tide is present 

somewhere in the tropics and not necessarily at P. An 

enhanced tide (etide) was taken to occur when points 

OPCS are co-linear. During that time, the enhanced tide is 

now located at P and sdec=latitude at P (overhead moon 

and sun at P). Etide occurs only during the new moon 

phase. We notice that a solar eclipse event condition at P 

is satisfied whenever PCS are co-linear but that will not 

necessarily satisfy either the atide or the etide state at P. 

Thus the solar eclipse will always have tidal effects at 

some location where the declinations coincide with the 

latitude. See Figure 2. 

 

 
 

Figure 2. Lunar orbit showing New moon at perigee, the condition for the greatest tidal forces 
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Due to the elliptic nature of the lunar orbit the relative 

strength of the tidal force within a lunation is determined 

by the earth-moon distance denoted by a synodic decimal 

value between 0.0 and 1.0. Figure 2 shows the earth-moon 

system with the earth at a lunar elliptical orbit focus. The 

magnitude of the tidal forces are symmetrical for the two 

halves of the lunation. The factor representing the tidal 

strength in any one month was taken to be the value of the 

synodic decimal at mid-month and referred to as the 

synod and had a value of 1.0 at apogee and 0 at perigee.  

 

The moon describes an orbit round the earth in a plane 

inclined at 5.15 o to the ecliptic; the pole of the orbit 

revolves about that of the ecliptic once in 18.60 years, so 

that the inclination of the plane of the moon's orbit to the 

earth's equator varies between 23.45o± 5.15o or 18.30o and 

28.60o.The moon's declination consequently changes 

during each passage round its orbit between maximum 

northern and southern values which may vary from 18.5o 

to 28.5o. The change in maximum lunar declination (mld) 

influences lunar angular velocity relative to a terrestrial 

observer. The value of the maximum lunar declination is 

the numerical value of the factor mld for the month. 

Values of mld used in this study for the period 1901-2050 

are shown in Figure 5. MLDs have a 18.6 year cycle in 

agreement with Yndestad et al, [Yndestad et al, 2008]. 

 

 
(a) 

 

 
(b) 

 

Figure 3 (a) Maximum lunar declination monthly values for 

the period 1901-1950 and 

(b) Apogee and Perigee distances the period 1901-1910 

Perigee and apogee distances vary along the lunar orbit. 

Mean distance of the moon from the earth is 384405 km, 

or 60.335 times the earth's radius (6371.2 km) while the 

eccentricity of the orbit is considerable, and slightly 

variable; the mean ratio of the maximum distance, at 

apogee, to the minimum value, at perigee, is 1.1162, and 

the maximum ratio is 1.1411. The period from one apogee 

to the next is called the anomalistic month and the apogee 

revolves round the lunar orbit once in 8.8 years as shown 

in Figure 3(b). For each month, the average perigee and 

apogee distance is calculated. Numerical values represent 

the factor perigee (prg) and apogee (apg) as calculated by 

means of a tides calculator obtained from Dcsymbols 

[Dcsymbols]. Figure 3(b) shows apogee and perigee 

distances for the period 1901-1910. We observe from 

equation (2,10) that perigee variation can have more 

significant influence on tidal variation than apogee given 

that tidal potential is inversely proportional to the cube of 

the distance. During a perigee, the moon is 40,000 km 

closer than during an apogee and this distance varies by 

about 10,000 meters twice each year. [Horizons, 

2013].The lunar phase (lunaph) is the integral value 

representing any of the four lunar phases, phase one being 

represented by integer 1. 

 

3.3 Proposed Design  
 

Having discussed the method used to obtain the factors, 

we now discuss the rainfall model fitting procedure. This 

model design is based on fitting a GLM of the Tweedie 

family to the Nairobi rainfall on two datasets. 
 

Model KenMet12.9 fits the KenMet dataset (1959-2003). 

The model is trained on the 1970-2000. The remaining 

segments (1959-1969 and 2001-2003) are used to validate 

the fit. Model CRUKenya fits the CRUKenya dataset 

(1901-2000). The model is trained on the 1940-1970 

segments. Model validation is done using the 1901-1939 

and the 1971-2000 data segments. 
 

4. RESULTS AND DISCUSSION 
 

Both Model CRUKenya fits the CRUKenya models fit an 

additive GLM of the form: 
 

RFall~sdec+atide+ldec+mld+synod+etide+apogee+perigee. 
 

A GLM of the Tweedie family was then fitted on both 

datasets and beta values obtained using a log link 

function. Beta values were the used to estimate monthly 

rainfall values for the period 1901-2020 according to 

equation (2.3).  
 

Model Accuracy 
 

For the training period, correlation between the model 

estimates and the measurements as well as the adjusted R-

squared values are shown in Table 2. 
Table 1 Goodness of fit between Model estimates and 

measurements 
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Data Correlation  

Coefficients 

Adjusted 

R2 

KenMet 0.63 0.39 

CRUKenya 0.84 0.70 

 

We observe that increasing the value of R-squared (R2) is 

possible by increasing the degrees of freedom within the 

explanatory variables but this may lead to poorer fit on 

test data. CRUKenya model dataset gave a better fit than 

KenMet model. A look at Table 1 shows a better 

CRUKenya fit. Moving window correlations were used to 

determine acuracy between the model results and the 

estimates over the whole of the training period. Month to 

month correlation obtained for each year of model 

training are shown in Figure 4. 

 

 
(a) 

 

 
(b) 

 

Figure 4. Moving window correlation showing month-to-

month correlation for each year of model training 

(a)KenMet,(b)CRUKenya datasets 

 

Models performed well during the training period with 

correlation above 0.4 throughout the model training 

period whole that of CRUKenya remained above 0.6. 

Models then performed projections of monthly rainfall for 

the periods 1959-2003 (KenMet) and 1901-2000(CRU 

Kenya) and a moving window correlation again used to 

test projection ability. as shown in Figure 5. 

 

 
(a) 

 

  
(b) 

 

Figure 5. Moving window correlation showing month-to-

month correlation for each year of model training and 

testing for (a) KenMet12.9 and (b) CRUKenya models 

 

Correlation values for the training period are the ones 

shown in Figure 4. Projection ability is determined by the 

accuracy of estimates in the testing region of the dataset. 

Figure 5 shows no trend indicating that correlation is time 

dependent and that the independent is more visible in 

Figure 5(b). One can therefore expect a better estimate 

with the CRUKenya model. CRUKenya model was then 

used to work out monthly estimates for the period 1901-

2020.Monthly estimates were then aggregated to annual 

values to determine inter-annual variability by 

standardizing values of the annual totals shown in Figure 

6. Standardization was done by mean and standard 

deviation.Both models exhibit phase locking indicating 

that both models capture the same variability pattern. 

However, numerical summaries of the two series are 

different because CRUKenya is averaged for the whole 

country while KenMet summaries are properties of single 

location. See table 2 

 
 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
n

-7
0

Ja
n

-7
2

Ja
n

-7
4

Ja
n

-7
6

Ja
n

-7
8

Ja
n

-8
0

Ja
n

-8
2

Ja
n

-8
4

Ja
n

-8
6

Ja
n

-8
8

Ja
n

-9
0

Ja
n

-9
2

Ja
n

-9
4

Ja
n

-9
6

Ja
n

-9
8

Ja
n

-0
0

correl.KenMet

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ja
n

-4
0

Ja
n

-4
2

Ja
n

-4
4

Ja
n

-4
6

Ja
n

-4
8

Ja
n

-5
0

Ja
n

-5
2

Ja
n

-5
4

Ja
n

-5
6

Ja
n

-5
8

Ja
n

-6
0

Ja
n

-6
2

Ja
n

-6
4

Ja
n

-6
6

Ja
n

-6
8

Ja
n

-7
0

correl.CRUKenya

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
9

5
9

1
9

6
1

1
9

6
3

1
9

6
5

1
9

6
7

1
9

6
9

1
9

7
1

1
9

7
3

1
9

7
5

1
9

7
7

1
9

7
9

1
9

8
1

1
9

8
3

1
9

8
5

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

correl.KenMet

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
n

-0
1

Ja
n

-0
6

Ja
n

-1
1

Ja
n

-1
6

Ja
n

-2
1

Ja
n

-2
6

Ja
n

-3
1

Ja
n

-3
6

Ja
n

-4
1

Ja
n

-4
6

Ja
n

-5
1

Ja
n

-5
6

Ja
n

-6
1

Ja
n

-6
6

Ja
n

-7
1

Ja
n

-7
6

Ja
n

-8
1

Ja
n

-8
6

Ja
n

-9
1

Ja
n

-9
6

correl.CRUKenya

 

 

 

 

 

 

Training  data 

 

 

 

 

Training  

data 

 

 

 

 

 

Testing data 

 

 

 

 

 

Testing 

data 



International Journal of Science and Technology (IJST) – Volume 2 No. 6, June, 2013 

 

IJST © 2013 – IJST Publications UK. All rights reserved.  451 

 

Table 3. Numerical summaries of the projected series 
 

 

mean sd 0% 25% 50% 75% 100% n 

CRUKenya 679 79 475 623 675 730 951 120 

KenMet 925 254 429 752 917 156 1980 120 

 

KenMet12.9 and CRUKenya reliability in predicting 

events of severe hydrology in the country was tested 

against historical values. Figure 6 shows two-year 

averaged anomalies for the period 1901-2020 as projected 

by the two models; KenMet12.9 and CRUKenya. 

 

 
 

Figure 6. CRUKenya and KenMet12.9 models results showing variation of projected annual rainfall 

 

Both models show a similar variability pattern. Model 

results were compared with records. Available records 

show periods of annual rainfall falling below normal in 

the following years: 1928, 1933-34, 1937, 1939, 1942-44, 

1947, 1951, 1952, 1955, 1957, 1975, 1977, 1980, 1983-

85, 1991-92, 1995-96, 1999-2000, 2004. [UNDP, 2004]. 

Others are 1960, 1965, 1969, 1973, 1976, 1987, 1993, 

[KenMet]. Recorded floods occurred in 1961, 1963, 1978, 

1990-92, 1997-98, 2001 [KenMet]. Floods in Kenya are 

less devastating than droughts and therefore more interest 

is given to droughts. The severity of the specific drought 

or flood event depends on the geographical location in the 

country. All the droughts and floods are placed in the 

right years by the model. 

 

The models estimates project above normal rainfall in 

2012-2014 and below normal rainfall in 2016 and 2019-

20, as seen Figure 6. 

 

5. CONCLUSION 
 

This study was necessitated by the need to establish the 

cause(s) of the Kenyan droughts of the 1984 and 2004. 

Two models named KenMet12.9 and CRUKenya suggest 

that the droughts were largely due to natural variability. 

This is supported by the fact that the rainfall pattern could 

be estimated using only solar and lunar geometry 

variables and their derivatives as explanatory variables in 

a rainfall distribution model and obtaining a correlation 

coefficient as higher than 0.7 between the model estimate 

and the measurements. It is however necessary to 

continue to investigate the factors which determine the 

unexplained variability.  

 

Because atmospheric tidal states are the main 

considerations in the rainfall distribution model, there is 

increased likelihood that the increased severity in extreme 

hydrology could be related to air tides. The models 

indicate above normal annual rainfall in 2012-2014, and 

below normal rainfall in 2016, 2019-20. Further model 

improvements will be possible if more factors and 

covariates are identified which make the estimates more 

accurate in terms of amounts. The model may also be 

expanded to include multiple site estimates so long as 

reliable climate variables records are available for each 

site for a reasonably long time. Our ability to collect and 

store reliable data continuously will therefore always be 

put to test. The models have been used to predict rainfall. 

The same procedure may however be used on any other 

climate variable bearing in mind that the explanatory 

variables may be different for each climate variable. The 

statistical model successfully captured a large amount of 

variability in the precipitation and depicted the important 

relationships between the precipitation and the predictors. 

Considering the numerous potential sources of variability 

for the precipitation, the R-squared value of 0.7 obtained 

in the models is significant. Further work may be done in 

modeling of the extreme values by investigating the tail 

and head behaviour of the distribution with their 

corresponding return periods. 
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