Panel Data: The Effects of Some World Development Indicator (WDI) on GDP Per Capita of Selected African Union (AU) Countries (1981-2011)

M. I Ekum\(^1\), D. A Farinde\(^2\), F. J Ayoola\(^3\)

\(^{1,2}\)Department of Mathematics & Statistics, Lagos State Polytechnic, Lagos State, Nigeria

\(^3\)Department of Statistics, University of Ibadan, Oyo State, Nigeria

ABSTRACT

In this paper, we employ Fixed Effect of Panel Data Model to formulate a Panel Data Linear Regression model of Gross Domestic Product Per Capita of 20 African Union (AU) Countries using five World Development Indicators (WDI) as explanatory variables. Data were collected from 1981 to 2011. The five WDI are OER-Official Exchange Rate (LCU Per USS, Period Average), BM-Broad Money (% of GDP), INF-Inflation, GDP deflator (Annual %), TNR-Total Natural Resources Rents (% of GDP) and FDI-Foreign Direct Investment, Net Inflows (% of GDP). At the end of the analysis it was discovered that the OER, BM, INF, TNR and FDI all have significant relationship with GDP per Capita (RGDP). The estimated GDP per capita of the selected AU countries when the effect of OER, BM, INF, TNR and FDI are zero is $193.29. 1.00 unit increase in OER-Official Exchange Rate (LCU Per USS, Period Average) will lead to a significant reduction in GDP per capita by $0.23 (0.23USD); if BM-Broad Money (% of GDP) increases by 1.00% then GDP per capita will increase by $24.50; if INF-Inflation, GDP deflator (Annual %) increases by 1.00% then GDP per capita will decrease by $1.11; if TNR-Total Natural Resources Rents (% of GDP) increases by 1.00% then GDP per capita will increase by $3.65 and if FDI-Foreign Direct Investment, Net Inflows (% of GDP) increases by 1.00% then GDP per capita will increase by $57.05. It is seen that 97.2% of the total variation in GDP per capita of the selected AU countries can be explained by the variations in these five WDI used in this paper while the remaining 2.8% could be explained by other variables other than the five WDI used in this model. The result also shows significant cross-sectional effects i.e, countries effects. We therefore recommend that for African countries to be among the best economies in the world, they have to increase their gross domestic product per capital (RGDP) by increasing their foreign direct investment (FDI), total natural resources (TNR) and broad money (BM) while on the other hand, they have to reduce their official exchange rate (local currency to US dollar) and inflation rate (INF).

Keywords: Econometrics, Cross section, Time series, Panel data, fixed effect, random effect.

1. **INTRODUCTION**

Econometrics is a rapidly developing branch of economics which, broadly speaking, aims to give empirical content to economic relations (Frisch, 1936 [8]). Econometrics can be defined generally as the application of mathematics and statistical methods to the analysis of economic data. (Samuelson, Koopmans and Stone, 1954 [13])

Panel data are data where the same observation is followed over time (like in time series) and where there are many observations (like in cross-sectional data). In this sense, panel data combine the features of both time-series and cross-sectional data and methods. (Michele Pellizzari, 2012 [11])

2. **PANEL DATA MODEL**

Different types of data are generally available for empirical analysis, namely, time series, cross section, and panel. A data set containing observations on a single phenomenon observed over multiple time periods is called time series (e.g. GDP per capita of a country for several years). In time series data, both the values and the ordering of the data points have meaning. In cross-sectional data, values of one or more variables are collected for several sample units or entities, at the same point in time (e.g., GDP per capita of several countries for a given year). (Woolridge, J, 2002 [14]).

Panel data sets refer to sets that consist of both time series and cross section data. This has the effect of expanding the number of observations available, for instance if we have 31 years of data across 20 countries, we have 620 observations. So although there would not be enough to estimate the model as a time series or a cross section, there would be enough to estimate it as a panel. (Robert A. Yaffee (2003) [12]).

Looking at the model below:

$$y_{it} = \beta_0 + \sum_{w=1}^{k} \beta_w x_{wit} + \gamma_{it}$$ \hspace{1cm} (2.1)

In matrix form
In time series data, \(t = 1, 2, \ldots, T \) and \(n = 1 \); while in cross-sectional data, \(i = 1, 2, \ldots, n \) and \(T = 1 \). However, in panel data, \(t = 1, 2 \ldots T \) and \(i = 1, 2 \ldots n \).

2.1 Types of Panel Data

Generally speaking, there exist two types of panel datasets. **Macro panels** are characterized by having a relatively large \(T \) and a relatively small \(n \). A typical example is a panel of countries where the variables are macro data like the one we are working on i.e GDP per capita. **Micropanels**, instead, usually cover a large set of units “\(n \)” for a relatively short number of periods \(T \).

Another important classification is between balanced and unbalanced panels. A balanced dataset is one in which all the \(n \) observations are followed for the same number of periods \(T \). In an unbalanced dataset each observation might be available for a different number of periods so that the time dimension is potentially different for different observations. (Afees A. S, 2011 [1])

2.2 Uses of Panel Data

Panel data possess some advantages over cross-sectional or time series data.

Panel data can address issues that cannot be addressed by cross-sectional or time-series data alone. Baltagi (2008 [5]) highlighted the following advantages of panel data over cross-sectional or time-series data:

(i) Panel data control for heterogeneity, they give more informative data, more variability, less collinearity among the variables, more degrees of freedom and more efficiency.

(ii) They study better, the dynamics of adjustment.

(iii) They are able to identify and measure effects that are simply not detectable in pure cross-sectional or pure time series data.

(iv) Panel data models allow us to construct and test more complicated behavioural models than purely cross-sectional or time-series data.

2.3 ESTIMATION OF PANEL DATA MODELS

As earlier discussed, panel data has two dimensions viz: the individual dimension and time dimension. A panel data model differs from a cross-section or time series in that it has double subscript on its variables. That is, it’s of the form:

\[
y_{it} = \beta_0 + X'_{it}\beta + U_{it}
\]

2.2

\[
y_{it} = \beta_0 + \sum_{w=1}^{k} \beta_w x_{wit} + U_{it}
\]

2.3

\[
y_{it} = \beta_0 + X'_{it}\beta + U_{it}
\]

2.4

\[
y_{it} = \beta_{0i} + \sum_{w=1}^{k} \beta_w x_{wit} + U_{it}
\]

2.5

\[
y_{it} = \beta_{0i} + X'_{it}\beta_i + U_{it}
\]

2.6

\[
y_{it} = \beta_{0it} + \sum_{w=1}^{k} \beta_{wi} x_{wit} + U_{it}
\]

2.7

\[
y_{it} = \beta_{0i} + X'_{it}\beta_{it} + U_{it}
\]

2.8

I could denote individuals, households, firms, countries etc. for the purpose of this paper, \(i \) denotes countries while \(t \) denotes time, \(y_{it} \) hence denotes the value of the dependent variable \(y \) for country \(i \) at time \(t \), \(\beta_0 \) is a scalar, \(\beta \) is \(k \times 1 \) matrix (a column vector) and \(x_{it} \) is the \(i \)th observation on the \(k \) explanatory variables. Although (2.3) postulates common intercept \((\beta_0) \) for all \(i \) and \(t \) and common vector of slope coefficients for all \(i \) and \(t \), variants of the model exist. The variants include:

(2.4) postulates constant slope coefficients and intercept that varies over countries.

(2.5) postulates constant slope coefficients and intercept that varies over countries and time.

(2.6) postulates intercept and slopes that vary over countries.

(2.7) postulates intercept and slopes that vary over time and countries.

However, (2.3) suffices for most applications involving static (non dynamic) panel data models and shall hence form the basis of our further discussions on panel data. (Ayoola F. J, 2013 [2])

3. METHODOLOGY

Basically, the static panel data models can be estimated using:

1. Ordinary Least Square (OLS)
2. Fixed Effects (FE) and
3. Random Effects (RE)
4. Seemingly Unrelated (SUR). (See Baltagi, B.H., 1980 [4])

Each of these methods has its underlying assumptions which must necessarily be satisfied to obtain unbiased and efficient estimates. We consider only the Fixed Effects model.

3.1 One-Way Error Component Regression Model

Recall (2.3)

\[y_{it} = \beta_0 + \sum_{w=1}^{K} \beta_w X_{wit} + U_{it} = \beta_0 + X_{it}' \beta + U_{it} \]

\[i = 1, 2 \ldots n; \quad t = 1, 2 \ldots T \]

Where \(U_{it} \) denotes the effect of all omitted variables.

If \(U_{it} \) is decomposed as

\[U_{it} = \mu_i + v_{it} \]

We have

\[y_{it} = \beta_0 + X_{it}' \beta + \mu_i + v_{it} \]

(3.2) is called the one-way error component model where \(\mu_i \) denotes the unobservable country specific (time invariant) effect and \(v_{it} \) (which varies with individual and time), the remaining disturbance in regression. (Baltagi, B.H. and Q. Li, 1992 [4])

3.2 THE FIXED EFFECTS MODEL

As earlier emphasized, one of the approaches used to capture specific effects in a panel data model is the fixed effects (FE) regression. The FE approach is based on the assumption that the effects are fixed parameters that can be estimated. (Ayoola F. J, 2013)

In this case, the omitted country specific term \(\mu_i \) are assumed to be fixed parameters to be estimated and \(v_{it} \) normal, independent and identically distributed i.e \(NIID(0, \sigma_v^2) \). The \(X_{it} \) are assumed to be independent of \(v_{it} \) for all \(i \) and \(t \). The fixed effects model is appropriate if inference is to be drawn on the countries that constitute the sample only and not for generalization for the entire population. (Hsiao, C. 2003 [9])

In vector form (3.2) can be written as:

\[Y = \beta_0 J_{nT} + X \beta + U \]

\[= Z \delta + Z \mu + U \]

where \(Y \) is \(nT \times 1 \); \(X \) is \(nT \times K \); \(Z = (J_{nT}, X) \); \(\delta' = (\beta_0, \beta') \)

\(J_{nT} \) is a vector of ones of dimension \(nT \).

Note that (3.1) can be written as

\[U = Z \mu + v \]

\[\mu' = (\mu_1, \mu_2 \ldots \mu_n); \quad v = (v_{11}, v_{12} \ldots v_{1T}, v_{21} \ldots v_{2T} \ldots \ldots \ldots v_{n1}, v_{n2} \ldots v_{nT}) \]

\[Z \mu \] is a matrix of ones and zeroes, that is, a matrix of individual dummies that are included in the regression to estimate \(\mu_i \) which are assumed fixed.

At this juncture, we should note the following:

\[* Z \mu Z' \mu = I_n \otimes J_T \] (where \(J_T \) is a square matrix of \(1 \)'s of dimension \(T \))

\[** P = Z \mu (Z \mu Z' \mu)^{-1} \]

\[= I_n \otimes J_T \]

\[\{ \text{P is a projection matrix on } Z \mu \}; \quad \text{P averages the observations across time for each country.} \}

\[*** Q = I_{nT} - P \]

\[\{ \text{Q is a matrix which obtains deviations from individual mean.} \}

\[**** \text{P and Q are symmetric idempotent matrices (} P' = P \quad \text{and} \quad P^2 = P \}

\[\text{P and Q are orthogonal i.e } PQ = 0 \]

\[\text{P + Q = } I_{nT} \]

Model Estimation

If we substitute (3.4) into (3.3), we shall have:

\[y = \alpha J_{nT} + X \beta + Z \mu + v \]

\[= Z \delta + Z \mu + v \]

\[\Rightarrow y = QX \beta + Qv \]

\[= Z \delta + Z \mu + v \]

Where \(Z \) is \(nT \times (K+1) \) and \(Z \mu \), the matrix of country dummies is \(nT \times n \), if \(n \) is large, (3.5) will include too many dummies and the matrix to be inverted will be dimension \((N+K)! \). Apart from the herculean task of having to invert such a large matrix, the matrix will also fall into dummy variable trap.

Rather than attempt OLS on (3.5), we can obtain Least Squares Dummy Variables (LSDV) Estimators of \(\alpha \) and \(\beta \) by pre multiplying (3.5) by \(Q \) and performing OLS on the transformed model:

\[Qy = QX \beta + Qv \]

\[= Z \delta + Z \mu + v \]

\[\Rightarrow Qy = QX \beta + Qv \]

\[= Z \delta + Z \mu + v \]

\[\Rightarrow Qy = QX \beta + Qv \]

\[= Z \delta + Z \mu + v \]

\[= \mu' (QX) \]

\[Qv = Qy - QX \beta \]

\[s = (Qy)'(Qv) = (Qy - QX \beta)'(Qy - QX \beta) \]

\[\Rightarrow Qy = QX \beta + Qv \]

\[Qv = Qy - QX \beta \]

\[s = (Qy)'(Qv) = (Qy - QX \beta)'(Qy - QX \beta) \]
\[S = y'Q'y - y'Q'\beta - \beta'X'Q'y + \beta'X'Q'\beta \]
\[S = y'Q'y - 2\beta'X'Q'y + \beta'X'Q'\beta \]
\[\frac{dS}{d\beta} = -2X'Q'y + 2\beta'X'Q'\beta \]
\[0 = -2X'Q'y + 2\beta'X'Q'y \]
\[2\beta'X'Q'\beta = 2X'Q'y \]
\[\hat{\beta} = (X'QX)^{-1}X'Q'y \]

Mean of \(\beta \)

\[\hat{\beta} = (X'QX)^{-1}X'Qy \]
\[\hat{\beta} = (X'QX)^{-1}X'Q\beta + (X'QX)^{-1}X'Qv \]
\[\hat{\beta} = \beta + (X'QX)^{-1}X'Qv \]
\[E(\hat{\beta}) = \beta + (X'QX)^{-1}X'QE(v) \]

Since \[E(v) = 0 \]
Then \[E(\hat{\beta}) = \beta \]
Hence, \(\hat{\beta} \) is an unbiased estimate of \(\beta \).

Variance of \(\beta \)

\[\hat{\beta} - \beta = (X'QX)^{-1}X'Qv \]
\[V(\beta) = E(\beta - \beta)(\beta - \beta) \]

On substituting (3.7) into (3.8), we have
\[V(\beta) = E[[X'QX)^{-1}X'Qv][X'QX)^{-1}X'Qv]] \]
\[V(\beta) = E[(X'QX)^{-1}X'QvQ'X(X'QX)^{-1}] \]

Since \[QQ' = Q \]
We have
\[V(\hat{\beta}) = [(X'QX)^{-1}X'Q][E(vv')Q'X(X'QX)^{-1}] \]
\[E(vv') = \sigma_v^2 I_{nT} \]
Then
\[V(\hat{\beta}) = \sigma_v^2 I_{nT}[(X'QX)^{-1}X'QX(X'QX)^{-1}] \]

Note: The OLS \(\hat{\beta} = \beta + (X'QX)^{-1}X'Qv \) is sometimes called the Least Square Dummy Variable (LSDV).

4. RESULT OF ANALYSIS

The proposed Econometric model is given by
\[Y_{it} = \beta_0 + \beta_1\text{OER}_{it} + \beta_2\text{BM}_{it} + \beta_3\text{INF}_{it} + \beta_4\text{TNR}_{it} + \epsilon_{it} \]

For \(i = 1, 2, \ldots, n \) and \(t = 1, 2, \ldots, T \) where \(n = 20; T = 31 \)

Note: The independent variables are carefully selected so that they are correlated with the dependent variable but are not correlated with other independents variables. Hence, the independent variables are not correlated with one another (no multicollinearity).

In this section, we present the result of the model using the following specifications below.

Model Specification

Estimation of equation

Methods: Least Squares (LS)

Sample: 1981-2011

Panel Options

Effects specification: Cross Section is fixed, Period is none

Weights: GLS weight: Cross-section SUR

Coefficient covariance method: Ordinary

Table 1: Panel Data Format

<table>
<thead>
<tr>
<th>CCode</th>
<th>Cnid</th>
<th>t</th>
<th>i</th>
<th>YEAR</th>
<th>RGDP</th>
<th>OER</th>
<th>BM</th>
<th>INF</th>
<th>TNR</th>
<th>FDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1981</td>
<td>772.10</td>
<td>0.62</td>
<td>30.03</td>
<td>16.21</td>
<td>30.18</td>
<td>0.91</td>
</tr>
<tr>
<td>NGA</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1982</td>
<td>624.98</td>
<td>0.67</td>
<td>32.13</td>
<td>2.61</td>
<td>29.19</td>
<td>0.87</td>
</tr>
<tr>
<td>NGA</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1983</td>
<td>428.13</td>
<td>0.72</td>
<td>33.31</td>
<td>16.14</td>
<td>35.71</td>
<td>1.04</td>
</tr>
<tr>
<td>NGA</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1984</td>
<td>336.74</td>
<td>0.77</td>
<td>33.40</td>
<td>16.95</td>
<td>47.46</td>
<td>0.67</td>
</tr>
<tr>
<td>NGA</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1985</td>
<td>330.98</td>
<td>0.89</td>
<td>32.00</td>
<td>3.69</td>
<td>47.04</td>
<td>1.71</td>
</tr>
<tr>
<td>NGA</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>1986</td>
<td>229.52</td>
<td>1.75</td>
<td>32.31</td>
<td>-1.50</td>
<td>31.82</td>
<td>0.96</td>
</tr>
<tr>
<td>NGA</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>1987</td>
<td>259.41</td>
<td>4.02</td>
<td>26.54</td>
<td>50.08</td>
<td>33.39</td>
<td>2.60</td>
</tr>
<tr>
<td>NGA</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>1988</td>
<td>246.39</td>
<td>4.54</td>
<td>26.44</td>
<td>21.38</td>
<td>29.16</td>
<td>1.66</td>
</tr>
<tr>
<td>CIV</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1981</td>
<td>948.99</td>
<td>271.73</td>
<td>27.92</td>
<td>2.98</td>
<td>3.84</td>
<td>0.39</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>CIV</td>
<td>2</td>
<td>2</td>
<td>13</td>
<td>1982</td>
<td>815.28</td>
<td>328.61</td>
<td>26.56</td>
<td>8.30</td>
<td>4.64</td>
<td>0.63</td>
</tr>
<tr>
<td>CIV</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>1983</td>
<td>706.10</td>
<td>381.07</td>
<td>26.55</td>
<td>9.05</td>
<td>5.50</td>
<td>0.55</td>
</tr>
<tr>
<td>CIV</td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>1984</td>
<td>678.06</td>
<td>436.96</td>
<td>27.63</td>
<td>17.91</td>
<td>5.05</td>
<td>0.32</td>
</tr>
<tr>
<td>CIV</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>1985</td>
<td>664.87</td>
<td>449.26</td>
<td>29.97</td>
<td>0.34</td>
<td>4.70</td>
<td>0.42</td>
</tr>
<tr>
<td>CIV</td>
<td>2</td>
<td>6</td>
<td>17</td>
<td>1986</td>
<td>840.50</td>
<td>346.31</td>
<td>30.42</td>
<td>-2.02</td>
<td>2.76</td>
<td>0.77</td>
</tr>
</tbody>
</table>

OUTPUT FROM EVIEWS 7

Table 2: Descriptive Statistics of Variables Used.

<table>
<thead>
<tr>
<th></th>
<th>RGDP</th>
<th>OER</th>
<th>BM</th>
<th>INF</th>
<th>TNR</th>
<th>FDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1160.794</td>
<td>197.7944</td>
<td>37.83302</td>
<td>12.69653</td>
<td>7.640170</td>
<td>1.274752</td>
</tr>
<tr>
<td>Median</td>
<td>583.1229</td>
<td>8.803060</td>
<td>32.16974</td>
<td>7.774248</td>
<td>4.042073</td>
<td>0.373410</td>
</tr>
<tr>
<td>Maximum</td>
<td>8532.617</td>
<td>2522.746</td>
<td>151.5489</td>
<td>189.9751</td>
<td>48.50557</td>
<td>10.05164</td>
</tr>
<tr>
<td>Minimum</td>
<td>102.4829</td>
<td>0.000275</td>
<td>7.287787</td>
<td>-27.04865</td>
<td>0.145038</td>
<td>-2.069713</td>
</tr>
<tr>
<td>Skewness</td>
<td>2.254689</td>
<td>2.852006</td>
<td>1.194571</td>
<td>4.347025</td>
<td>2.344576</td>
<td>1.926401</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>8.838048</td>
<td>13.04535</td>
<td>4.468418</td>
<td>27.94831</td>
<td>8.064135</td>
<td>7.063302</td>
</tr>
<tr>
<td>Jarque-Bera</td>
<td>1405.780</td>
<td>3447.326</td>
<td>203.1598</td>
<td>18031.79</td>
<td>1230.535</td>
<td>809.9913</td>
</tr>
<tr>
<td>Probability</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
It can be seen from Table 2 that the average RGDP per capita is $1,160.79, the average Official Exchange Rate (in local currency) is 197.79, the average board money is 37.83, the average inflation rate (GDP deflator) is 12.70, the total natural resources % of GDP is 7.64 and the foreign direct investment % of GDP is 1.27.

It is also evident that the GDP per capita minimum ever attained is $102.48 and the maximum ever attained is $8532.62. The standard deviation for the 620 dataset for RGDP is 1325.736 with skewness and kurtosis of 2.25 and 8.84 respectively.

4.1 Empirical Results

This section presents the empirical results of our model with the objective to assess the impact of some world development indicators (OER, BM, INF, TNR, FDI) on variables on gross domestic product per capita Africa Union countries. Estimates are made using the ordinary least squares static panel of cross sectional fixed effect. The choice of this model is justified by the fact that the dynamic panel data and random effect have not yielded robust estimators. Table 3 shows the results of estimating the Fixed Effect panel model in one stage on 20 African Union countries for the period 1981-2011. (See Breusch, T. and A. Pagan, 1980).

<table>
<thead>
<tr>
<th>Table 3: Estimates of the Cross Section Fixed Effect panel model of one-error component on 20 African Union countries for the period 1981-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable: RGDP</td>
</tr>
<tr>
<td>Method: Panel EGLS (Cross-section SUR)</td>
</tr>
<tr>
<td>Sample: 1981 2011</td>
</tr>
<tr>
<td>Periods included: 31</td>
</tr>
<tr>
<td>Cross-sections included: 20</td>
</tr>
<tr>
<td>Total panel (balanced) observations: 620</td>
</tr>
<tr>
<td>Linear estimation after one-step weighting matrix</td>
</tr>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>OER</td>
</tr>
<tr>
<td>BM</td>
</tr>
<tr>
<td>INF</td>
</tr>
<tr>
<td>TNR</td>
</tr>
<tr>
<td>FDI</td>
</tr>
</tbody>
</table>

Effects Specification

Weighted Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared</td>
<td>0.971509</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.970360</td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.989187</td>
</tr>
<tr>
<td>F-statistic</td>
<td>845.3767</td>
</tr>
<tr>
<td>Prob(F-statistic)</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Unweighted Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared</td>
<td>0.747038</td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>2.75E+08</td>
</tr>
</tbody>
</table>
Interpretation of Regression Results

The model to be fitted is

\[\text{RGDP}_{it} = \beta_0 + \beta_1 \text{OER}_{it} + \beta_2 \text{BM}_{it} + \beta_3 \text{INF}_{it} + \beta_4 \text{TNR}_{it} + \beta_5 \text{FDI}_{it} + \epsilon_{it} \]

The model fitted is

\[\hat{\text{RGDP}}_{it} = 193.29 - 0.230 \text{OER}_{it} + 24.50 \text{BM}_{it} - 1.1175 \text{INF}_{it} + 3.65 \text{TNR}_{it} + 57.05 \text{FDI}_{it} \]

Based on the probability values, OER, BM, INF, TNR and FDI are all statically significant. Note that all the regressions are not in the same unit. The average estimated GDP per capita of the selected AU countries when the effect of OER, BM, INF, TNR and FDI are zero is $193.29. 1.00 unit increase in OER - Official Exchange Rate (LCU Per US$, Period Average) will lead to a significant reduction in GDP per capita by $0.23 (0.23USD); if BM - Broad Money (% of GDP) increases by 1.00% then GDP per capita will increase by $24.50; if INF - Inflation, GDP deflator (Annual %) increases by 1.00% then GDP per capita will decrease by $1.11; if TNR - Total Natural Resources Rents (% of GDP) increases by 1.00% then GDP per capita will increase by $3.65 and if FDI - Foreign Direct Investment, Net Inflows (% of GDP) increases by 1.00% then GDP per capita will increase by $57.05. (Note: All the estimated parameters are significant at 5% without exception)

Table 3 also shows that 97.2% of the total variation in GDP per capita of the selected AU countries can be explained by the variations in OER - Official Exchange Rate (LCU Per US$, Period Average), BM - Broad Money (% of GDP), INF - Inflation, GDP deflator (Annual %), TNR - Total Natural Resources Rents (% of GDP) and FDI - Foreign Direct Investment, Net Inflows (% of GDP) while the remaining 2.8% could be explained by other variables other than the ones used in this model. (Note: this is for the weighted statistics). While the unweighted statistics shows that 74.7% of the total variation in GDP per capita of the selected AU countries can be explained by the independent variables.

3. The Panel data Fixed Effect Regression Econometric Model formulated is given below as:

\[\text{RGDP}_{it} = 193.29 - 0.230 \text{OER}_{it} + 24.50 \text{BM}_{it} - 1.1175 \text{INF}_{it} + 3.65 \text{TNR}_{it} + 57.05 \text{FDI}_{it} + \mu_i \]

And \(\mu_i = \)

<table>
<thead>
<tr>
<th>(\mu_1)</th>
<th>(\mu_2)</th>
<th>(\mu_3)</th>
<th>(\mu_4)</th>
<th>(\mu_5)</th>
<th>(\mu_6)</th>
<th>(\mu_7)</th>
<th>(\mu_8)</th>
<th>(\mu_9)</th>
<th>(\mu_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-539.2</td>
<td>0.919</td>
<td>-310.2</td>
<td>-961.2</td>
<td>-563.1</td>
<td>2176.581</td>
<td>-613.2</td>
<td>-922.6</td>
<td>1281.641</td>
<td>2540.773</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\mu_{11})</th>
<th>(\mu_{12})</th>
<th>(\mu_{13})</th>
<th>(\mu_{14})</th>
<th>(\mu_{15})</th>
<th>(\mu_{16})</th>
<th>(\mu_{17})</th>
<th>(\mu_{18})</th>
<th>(\mu_{19})</th>
<th>(\mu_{20})</th>
</tr>
</thead>
<tbody>
<tr>
<td>853.9543</td>
<td>-1325</td>
<td>-475</td>
<td>700.3812</td>
<td>-194.2</td>
<td>-390.2</td>
<td>-258.7</td>
<td>-238.4</td>
<td>-639.2</td>
<td>-123.7</td>
</tr>
</tbody>
</table>

5. CONCLUSION

The data collected from World Bank Development Indicator (WDI) for 20 African Union (AU) countries from 1981 to 2011, which were summarized and analyzed in order to achieve the objectives of this work are hereby conclude as follows:

1. The Gross Domestic Product Per Capita (RGDP) of African Union (AU) countries ranges from $102.48 to $8,532.62, which was for Uganda in 1981 and Botswana in 2011. The average RGDP for AU countries is $1,160.79. The RGDP of AU countries is time dependent; i.e it has upward trend, it increases with time as shown by the line graph plot for each country except for Zimbabwe, which decreased steadily from $1,058.10 in 1981 to $354.63 in 2007 and started to recover in 2008 and rose to $757.09 in 2011. The minimum RGDP of Nigeria ever was $203.49 in 1993 and the maximum ever reached was $1,501.72 in 2011. It has been on the increase $272.44 in 1998 to $1,501.72 in 2011 (Thanks to democracy).

2. The predictors included in Africa nation’s RGDP are Official Exchange Rate (X_1), Broad Money (X_2), Inflation, GDP deflator (X_3), Total Natural Resources Rents (X_4) and Foreign Direct Investment, Net Inflows (X_5). All these 5 WDI are significantly related with the Gross Domestic Product Per Capita (RGDP). Their Variance Inflation Factor (VIF) computed with the pooled regression and the fixed effects show that there is no sign of multicollinearity in the data. Set. The independent variables do not have strong correlation with one another.
4. The five (5) WDI all have significant impact on nations’ RGDP. These WDI are Official Exchange Rate \((X_1) \), Broad Money \((X_2) \), Inflation, GDP deflator \((X_3) \), Total Natural Resources Rents \((X_4) \) and Foreign Direct Investment, Net Inflows \((X_5) \).

5. The individual country effects are significant at 5% level. The countries in Africa do not have the same RGDP but the ones within the same region tend to have the same RGDP with little variations as compared to the ones in other regions. The explanatory variables in X are independent of the idiosyncratic error term \((v_{it}) \). The idiosyncratic error term \((v_{it}) \) are identically and independently distributed with mean 0 and variance 0.94 that is \(v_{it} \sim iid(0, 0.94) \).

6. There is no significant autocorrelation (serial correlation) in the fixed effect regression model at 5% level of significance.

5.1 Recommendation

Gross Domestic Product per Capital (RGDP) is a measure of economic growth of a country. African Union (AU) countries should provide a means to increase this RGDP over time because this will go a long way to improve the well being of the citizens of such country and this can make such country be among the best economies in the world.

However, we therefore recommend that for African Union (AU) countries to be among the best economies in the world, they have to increase their gross domestic product per capital (RGDP) by increasing their foreign direct investment (FDI), total natural resources (TNR) and broad money (BM) while on the other hand, they have to reduce their official exchange rate (local currency to US dollar) and inflation rate (INF).

REFERENCES

