1M. H. Muddebihal, 2Srinivasa G
1Department of Mathematics, Gulbarga University, Gulbarga-585106, Karnataka, India
1,2Department of Mathematics, B.N.M Institute of Technology, 12th Main, 27th Cross, Banashankari 2nd Stage, Bengaluru-560070, Karnataka, India

ABSTRACT

Let \(G^2 = (V, E(G^2)) \) be a square graph of a graph \(G \). A set \(D \) of \(G^2 \) is said to be connected dominating set of \(G^2 \), if every vertex not in \(D \) is adjacent to at least one vertex in \(D \) and the sub graph \(\langle D \rangle \) is connected. The minimum cardinality of a connected dominating set of \(G^2 \) is called the connected domination number of square graph \(G^2 \) and is denoted by \(\gamma_c(G^2) \). In this paper many bounds on \(\gamma_c(G^2) \) are found in terms of elements of \(G \) but not the elements of \(G^2 \). Also its relationship with other different domination parameters were obtained. Further we develop the relation between \(G \) and \(G^2 \) in terms of domination parameters.

Keywords: Graph, Square graph, Dominating set, Connected domination number

Subject Classification Number: AMS - 05C69, 05C70.

1. INTRODUCTION

In this paper we follow the notations of [1]. All the graphs considered here are finite, non-trivial, undirected and connected without loops or multiple edges.

In general, we use \(\langle X \rangle \) to denote the sub graph induced by the set of vertices \(X \) and \(N(v) \) and \(N[v] \) denote the open and closed neighborhoods of a vertex \(v \), respectively. Also the term \(\alpha_0(G)(\alpha_1(G)) \) is the minimum number of vertices (edges) in a vertex (edge) cover of \(G \).

The square of a graph \(G \), denoted by \(G^2 \), has the same vertices as in \(G \) and the vertices \(u \) and \(v \) are joined in \(G^2 \), if and only if they are joined in \(G \) by a path of length one or two. The concept of squares of graphs was introduced in [2].

Let \(G = (V, E) \) be a graph. In this paper we denote the number of vertices of \(G \) as \(p \) and \(q \) the number of edges. A set \(D \subseteq V \) is said to be a dominating set of \(G \), if every vertex in \((V - D) \) is adjacent to some vertex in \(D \). The minimum cardinality of vertices in such a set is called the domination number of \(G \) and is denoted by \(\gamma(G) \).

A dominating set \(D^1 \) of \(G \) is said to be a connected dominating set, if the sub graph \(\langle D^1 \rangle \) induced by \(D \) is connected in \(G \). The minimum cardinality of vertices in such a set is called the connected domination number of \(G \) and is denoted by \(\gamma_c(G) \). Domination related parameters are now well studied in graph theory [3].

A dominating set \(D^1 \) of \(G \) is said to be an independent dominating set if no two vertices in \(D^1 \) are adjacent in \(G \). The minimum cardinality of an independent dominating set is called an independent domination number of \(G \) and is denoted by \(\gamma_i(G) \).

A dominating set \(D^1 \) of \(G \) is said to be total dominating set of \(G \), if \(N(D^1) = V \) or equivalently, if for every vertex \(v \in V \), there exists a vertex \(u \in D^1 \) such that \(u \) is adjacent to \(v \). The total domination number of \(G \), denoted by \(\gamma_t(G) \) is the minimum cardinality of a total dominating set of \(G \).

Further \(\beta_0(G) \) and \(\beta_1(G) \) represents vertex independence number and edge independence number.
A set D of G^2 is said to be connected dominating set of G^2 if every vertex not in D is adjacent to at least one vertex in D and the set induced by D is connected. The minimum cardinality of a connected dominating set of G^2 is called connected domination number of G^2. Much effort has been made by many authors to establish the relationship among distance domination parameters, for the known results see a recent survey by M.A.Henning [4].

In this paper we establish some relation of $\gamma_c(G^2)$ with $\gamma(G^2)$, $\alpha_0(G)$ and also the results of $\gamma_c(G^2)$ are expressed not in terms of the elements of G^2, but expressed in terms of the elements of G.

2. RESULTS

Initially we provide an upper bound for $\gamma_c(G^2)$ in terms of $\gamma_c(G)$.

Theorem 2.1: For any connected graph G, $\gamma_c(G^2) \leq \gamma_c(G)$. Equality holds for $\text{diam}(G) \leq 2$, except for K_{p_1,p_2} with $p_1, p_2 \geq 2$.

Proof: For any connected graph G with $\text{diam}(G) \geq 3$, let P be a diametral path such that $P: v_1, v_2, \ldots, v_k$. Suppose $I = \{v_i, v_{i+1}, \ldots, v_k\}$, $i \leq k$ be a connected dominating set of G such that $I \subseteq V(P)$, so that $|I| = \gamma_c(G)$. Now we consider $D = \{v_{i-1}, v_{i+1}, \ldots, v_{i+m}\}$. Hence $|D| = \gamma_c(G^2)$. Clearly, $\gamma_c(G^2) \leq \gamma_c(G)$.

Suppose $\text{diam}(G) \leq 2$ and if $G \cong K_{p_1,p_2}$, $p_1, p_2 \geq 2$ with $p_1 + p_2 = p = |V(G)|$. Then in this case, $|D| = |v_1| = |v_2|$, such that $p_1 \leq p_2$ or $p_2 \leq p_1$ respectively. Now in G^2, since $\text{diam}(G) \leq 2$, clearly, $|D| = 1|D'|$, and hence $\gamma_c(G^2) < \gamma_c(G)$.

Suppose $\text{diam}(G) \leq 2$ and if $G \cong K_{p_1,p_2}$. Then in this case, $|D| = 1|D'|$. Therefore $\gamma_c(G^2) = \gamma_c(G)$, gives the required result for equality.

Now we develop the relation of connected domination of G^2 with the spanning trees of G.

Theorem 2.2: For any nontrivial connected graph G, $\gamma_c(G^2) = \max \{\gamma_c(T^2) - 1\}$ where the maximum is taken over all spanning trees T of G.

Proof: Let G be a nontrivial connected graph and T be a spanning tree of G. Then any connected dominating set of T^2 is also a connected dominating set of G^2. Hence $\gamma_c(G^2) \leq \gamma_c(T^2)$. Thus we have that $\gamma_c(G^2) \leq \max \{\gamma_c(T^2) - 1\}$, where maximum is taken over all the spanning trees T of G.

For equality, we consider the reverse inequality of the above. If G is a tree, then the Theorem holds trivially. So we assume that G is connected graph containing cycles. Let D be a minimum connected dominating set of G^2 and C be a cycle in G. If we can prove that D is also a connected dominating set of G for $e \in E(C)$, then $\gamma_c(G-e^2) \leq D = \gamma_c(G^2)$. By applying this process a finite number of times, we have $\gamma_c(T^2) \leq \gamma_c(C^2)$, where the maximum is taken over all spanning trees of T of G.

If $V(C) \subseteq V(D)$, then obviously $V(D) - e$ for any $e \in E(C)$ is also connected and the vertices in $V(C) - D$ are also within distance two to D.

If $V(C) \not\subseteq V(D)$, then we select an edge xy in C such that $\text{dist}(x,D) + \text{dist}(y,D) = \max \{\text{dist}(u,D) + \text{dist}(v,D)\}$ such that $uv \in E(C)$ in G. Now we will show that D is connected dominating set of $G - \{xy\}^2$.

For any two adjacent vertices u and v in G we have $|\text{dist}(u,D) - \text{dist}(v,D)| \leq 1$. Then if there exists a vertex w in $V(C)$ of G such that $\text{dist}(w,D) = \max \{\text{dist}(v,D)\}$. Now we say that $w = x$ or $w = y$. Without loss of generality suppose that $\text{dist}(x,D) = \max \{\text{dist}(v,D): v \in V(C)\}$.

Let z be another neighbor vertex of x different from y in $V(C)$. This gives immediately that $\text{dist}(z, D) \leq \text{dist}(y, D)$ in G. Thus we get the distance between a vertex in $V(G) - D$ and D are not influenced by deleting the edge xy. This gives $\text{dist}(v, D)$ in $G - \{xy\}$, $xy \in E(C)$ is equal to $\text{dist}(v, D)$ such that $v \in V(G)$. Hence D is also a connected dominating set of $G - e$ for some cycle edge e.

\Box

Now we give the following Proposition which is straightforward.

Proposition 2.1: For any (p, q) graph G with $p \geq 2$ vertices, if $\text{rad}(G) \leq 2$ then $\gamma_c(G^2) = 1$.

In the following Theorems we give lower bounds to $\gamma_c(G^2)$.

Theorem 2.3: For any nontrivial connected (p, q)-graph G with maximum degree Δ, then $\gamma_c(G^2) \leq \min\{1, p - (\Delta + 2)\}$.

Proof: By Theorem 2.2, it is sufficient to show that $\gamma_c(G^2) \leq \min\{1, p - (\Delta + 2)\}$ for any spanning tree T with maximum degree $\Delta = \Delta(T)$.

If $\text{rad}(T) \leq 2$, then by Proposition 2.1, we get $\gamma_c(T^2) = 1$. Now we assume that $\text{rad}(T) > 3$. Let P be any longest path in T with end vertices u and v. Then there exist two vertices x and y of P such that $\text{dist}(x, u) = 2$ and $\text{dist}(y, v) = 2$ in T. Let P' be a xy subpath of P and let $D' = V(P) - V(P')$. Let $D = V(T) - [D' \cup M(T)]$ where $M(T)$ is the set of all end vertices of $V(T)$. Hence D must contain a connected dominating set of T^2. Since $u, v \in D' \cap M(T)$ and $M(T) \geq \Delta$, we have

\[
\gamma_c(T^2) \leq |V(T)| - |D' \cup M(T)| \leq |V(T)| - |D'| + |D' \cap M(T)| \leq p - 2^2 - \Delta + 2 \leq p - (\Delta + 2)
\]

as required.

\Box

Theorem 2.4: If G is connected graph, then $\gamma_c(G^2) \leq 5\gamma(G^2) - 4$.

Proof: Let G be a connected graph and let D be a dominating set of G^2. Then the induced sub graph $\langle D \rangle$ has at most $|D|$ components. Since D is a dominating set of G^2, we can connect two of these components to one component by adding at most four vertices to D. Hence we can construct a connected dominating set D of G^2 such that $D \supseteq D$ in at most $|D| - 1$ steps by adding at most four times of $(|D| - 1)$ vertices to D. Consequently, $\gamma_c(G^2) \leq |D| \leq 4(|D| - 1) = 5|D| - 4$ and if we choose D such that $|D| = \gamma(G^2)$.

In the following Theorem, we obtain the inequality relation between domination and connected domination of G^2.

Theorem 2.5: For any connected graph G, $\gamma(G^2) \leq \gamma_c(G^2)$. Equality holds for connected spanning sub graph H of G with $\text{diam}(H) \leq 4$.

Proof: For $p \leq 3$, the result is obvious. For $p \geq 4$, let $D = \{v_1, v_2, v_3, \ldots, v_m\} \subseteq V(G^2)$ be the set of vertices in G^2 such that $\text{diam}(u, v) \leq 4$, $u, v \in D$, which forms a minimal dominating set of G^2. Suppose $\text{diam}(u, v) = 4$, $u, v \in D$, then D itself is a γ-set of G^2. Further, if $\text{diam}(u, v) > 4$, there exists at least one vertex $w \not\in D$, such that the sub graph $\langle D \cup \{w\} \rangle$ is connected. Clearly, $D \cup \{w\} = D$ forms a minimal γ_c-set of G^2. Therefore, it follows that $\gamma(G^2) \leq \gamma_c(G^2)$.

Suppose $\text{diam}(H) \leq 4$ where H is spanning sub graph of G and is connected. Then in this case, there exist a vertex $v \in V(G^2)$ which covers all the vertices of G^2. Clearly, it follows that $\gamma(G^2) = |\{v\}| = \gamma_c(G^2)$.
Theorem 2.6: For any nontrivial tree T with m end vertices, $\gamma_c(T^2) \geq \left\lfloor \frac{p-m}{3} \right\rfloor$.

Proof: Let $M = \{v_1, v_2, v_3, \ldots, v_k\}$ be the set of all end vertices in T with $|M| = m$. Since $V(T) = V(T^2)$, without loss of generality in T^2 there exists a vertex set $D = V - M = \{v_1, v_2, v_3, \ldots, v_k\}$ which are at distance at most two and they covers all the vertices in T^2 such that the sub graph $\langle D \rangle$ is connected. Clearly, D is a minimal connected dominating set of T^2. Further, if every tree with at least two end vertices and with $\text{diam}(T) \leq 2$, which generates
\[\left\lfloor \frac{p-m}{2+2-1} \right\rfloor \leq |D| \] and hence\[\frac{p-m}{3} \leq \gamma_c(T^2). \]

Theorem 2.7: For any connected (p, q)-graph G, $\gamma_c(G^2) \leq p - \alpha_q(G)$. Equality holds for K_p.

Proof: For $p = 2$, the result follows immediately. For $p \geq 3$, let $A = \{v_1, v_2, v_3, \ldots, v_k\}, \text{deg}(v_i) \geq 2, 1 \leq i \leq k$ be the minimal set of vertices which covers all the edges in G, such that $|A| = \alpha_q(G)$. Now without loss of generality in G^2, if $\text{deg}(v_i) \leq 2$ in G^2, then the result follows immediately. Further, if $\text{deg}(v_i) > 2$ in G^2, then there exists a vertex set $D = \{v_1, v_2, v_3, \ldots, v_m\}, \text{deg}(v_i) \geq 3, 1 \leq n \leq m$, which covers all the vertices of G^2 such that the sub graph $\langle D \rangle$ is connected. Clearly, D is a γ_c-set of G^2. It follows that $|D| \leq p - |A|$ and hence $\gamma_c(G^2) \leq p - \alpha_q(G)$.

Suppose G is isomorphic to K_p, then in this case, $|D| = 1$ and $|A| = p-1 = p - |D|$. Therefore, $\gamma_c(G^2) = p - \alpha_q(G)$.

Theorem 2.8: For any connected (p, q)-graph G, $\gamma(G) + \gamma_c(G^2) \leq p - 1$, for $p \geq 3$. Equality holds for C_3, P_3, C_4 and P_4.

Proof: For $p = 2$, clearly, $\gamma(G) + \gamma_c(G^2) \leq p - 1$. For $p \geq 3$, let $S = \{v_1, v_2, v_3, \ldots, v_n\}$ and $\text{deg}(v_i) \geq 2, 1 \leq i \leq n$, be the minimal set such that $N[v_1] = V(G)$. Clearly S is a minimal dominating set of G. Now without loss of generality in G^2, since $V(G) = V(G^2)$, there exists a set $D = \{v_1, v_2, v_3, \ldots, v_k\} \subseteq S$ which covers all the vertices in G^2. Suppose distance between two vertices $u, v \in D$ is at most two. Then the sub graph $\langle D \rangle$ itself is a connected and hence D is a connected dominating set of G^2. Further if $\text{dist}(u, v) \geq 3$ where $u, v \in D$, and clearly, the sub graph $\langle D \rangle$ is disconnected. Then there exists at least one vertex $w \notin D$ such that $D \cup \{w\}$ forms a connected dominating set in G^2. Since distance between any two vertices in G or G^2 is at least one, it follows that $|S| \cup |D \cup \{w\}| \leq p - 1$. Therefore $\gamma(G) + \gamma_c(G^2) \leq p - 1$.

For the equality, we have following cases.

Case 1: Suppose G is isomorphic to C_3 or P_3. Then in this case, $|S| = |D| = 1$ and $|S| \cup |D| = p - 1$. Clearly, $\gamma(G) + \gamma_c(G^2) = p - 1$.

Case 2: Suppose G is isomorphic to C_n or P_n. Then in this case, $|S| = 2|D|$. Clearly, it follows that $\gamma(G) + \gamma_c(G^2) = p - 1$.

Corollary 2.1: For any connected (p, q)-graph G, $\gamma(G) + \gamma_c(G^2) \leq p - 1$, for $p \geq 3$. Equality holds for C_3, P_3, C_4 and P_4.

Theorem 2.9: For any connected (p, q)-graph G with $p \geq 3$ vertices, $\gamma_c(G^2) \leq \left\lfloor \frac{p}{\Delta(G)-1} \right\rfloor$.

Proof: For $p = 2$, $\gamma_c(G^2) \leq \left\lfloor \frac{p}{\Delta(G)-1} \right\rfloor$. For $p \geq 3$, if $A = \{v_1, v_2, v_3, \ldots, v_n\}$ be the set of all non-end vertices in G. Then there exists at least one vertex $v \in V(G)$ such that $\text{deg}(v) = \Delta(G)$. Now without loss of generality in G^2, there exists a set
such that \(\text{deg}(v_i) \geq 2 \), \(1 \leq i \leq k \) and the sub graph \(\langle D \rangle \) is connected in \(G^2 \).

It follows that \(D \) is \(\gamma_c \)-set of \(G^2 \). Since for any graph \(G \) there exists at least one vertex \(v_i \), \(\forall i \), \(1 \leq i \leq k \) such that \(A \cap D = \{v_i\} \). Clearly, it follows that \(|D| \leq \left\lfloor \frac{p}{\Delta(G)-1} \right\rfloor \).

Therefore \(\gamma_c(G^2) \leq \left\lfloor \frac{p}{\Delta(G)-1} \right\rfloor \).

\[\text{Corollary 2.2: For any connected \((p,q) \)-graph \(G \) with \(p \geq 3 \) vertices, } \gamma_c(G^2) \leq \left\lfloor \frac{2q - p}{3} \right\rfloor. \]

The following theorem relates domination and connected domination numbers of \(G \) with \(\gamma_c(G^2) \).

Theorem 2.10: For any connected \((p,q) \)-graph \(G \), \(\gamma_c(G) - \gamma(G) \leq p - \gamma_c(G^2) \).

Proof: Let \(S = \{v_1, v_2, v_3, \ldots, v_k\} \) be the minimal dominating set of \(G \). Suppose the sub graph \(\langle S \rangle \) is connected, then \(S \) is a connected dominating set of \(G \). Further if the sub graph \(\langle S \rangle \) is disconnected, then there exists another vertex set \(J = \{v_1, v_2, v_3, \ldots, v_i\} \) where \(J \subseteq V(G) - S \) whose vertices are at distance one to the vertices in \(S \) such that the sub graph \(\langle S \cup J \rangle \) is connected. Clearly, \(S \cup J \) is a connected dominating set of \(G \). Since \(V(G) = V(G^2) \), there exists a vertex set \(D = \{v_1, v_2, v_3, \ldots, v_k\} \subseteq S \cup J \), \(\text{deg}(v_i) \geq 2 \), \(1 \leq i \leq k \), whose vertices are at distance at most one which covers all the vertices in \(G^2 \). Clearly, it follows that \(|S \cup J| - |S| \leq p - |D|\).

Therefore \(\gamma_c(G) - \gamma(G) \leq p - \gamma_c(G^2) \).

Theorem 2.11: For any connected \((p,q) \)-graph \(G \), \(\frac{\gamma_c(G^2)}{2} \leq p - \text{diam}(G) \), except for path \(P_p \) with \(p > 7 \). Equality holds for path \(P_p \) with \(p \leq 7 \).

Proof: Suppose \(G \cong P_p \) with \(p > 7 \), then \(\frac{\gamma_c(G^2)}{2} \leq p - \text{diam}(G) \). Let \(V(G) \) be the set of vertices in \(G \) such that there exists a diametral path between two vertices \(u, v \in G \), where \(\text{dist}(u, v) \) forms a \(\text{diam}(G) \). Let \(D = \{v_1, v_2, v_3, \ldots, v_n\} \), \(\text{deg}(v_i) \geq 2 \), \(1 \leq i \leq n \) in \(G^2 \), which are at distance at least two. These vertices covers all the vertices in \(G^2 \). Suppose the sub graph \(\langle D \rangle \) connected, then \(D \) itself is a connected dominating set of \(G^2 \). Further, if the sub graph \(\langle D \rangle \) is disconnected, then there exists at least one vertex \(w \notin D \) which is at distance at most two to the vertices in \(G^2 \). Clearly, the sub graph \(\langle D \cup \{w\} \rangle \) is connected and the set \(D \cup \{w\} \) is a minimal \(\gamma_c \)-set of \(G^2 \). Since any two vertices \(u, v \in G \) forms a diametral path of at least one in \(G \), it follows that \(\left\lfloor \frac{D \cup \{w\}}{2} \right\rfloor \leq p - \text{diam}(G) \).

Hence, \(\frac{\gamma_c(G^2)}{2} \leq p - \text{diam}(G) \).

Suppose \(G \) is isomorphic, path \(P_p \) with \(p \leq 7 \). Then in this case, \(|D \cup \{w\}| = p - 2 \) and \(\text{diam}(G) = p - 1 \). Clearly, it follows that,

\[\frac{\gamma_c(G^2)}{2} = 1 = p - \text{diam}(G). \]

Corollary 2.3: For any nontrivial tree \(T \) with \(\text{diam}(T) \leq 4 \), then \(\gamma_c(T^2) = 1 \).

Further we obtain the connected domination number of squares of some standard graphs as:

\[\gamma_c(K_{p,q}^2) = \gamma_c(W_5^2) = \gamma_c(K_{1,p}^2) = \gamma_c(K_{2,p}^2) = 1. \]

The following theorem relates connected domination and total domination numbers of \(G^2 \).

Theorem 2.12: For any connected \((p,q) \)-graph \(G \) with \(p \geq 3 \), \(\gamma_c(G^2) + \gamma_t(G) \leq p \). Equality holds for path \(P_3, P_6, C_3, C_6 \).
Proof: For \(p = 2 \), clearly, \(\gamma_c(G^2) + \gamma_c(G) \leq p \).

For \(p \geq 3 \), if \(S = \{v_1, v_2, v_3, \ldots, v_n\} \) be the minimal set of vertices with \(\deg(v_i) \geq 2, 1 \leq i \leq n \) and \(N[v_i] = V(G) \). And if the sub graph \(\langle S \rangle \) is not disconnected then

\(S \) is itself a minimal total dominating set of \(G \). Otherwise, \(S \cup H \), where \(H \subseteq V - S \), covers all the vertices in \(G \) and the sub graph \(\langle S \cup H \rangle \) doesn’t contain any isolated vertex. Clearly, the set \(S \cup H \) forms a minimal total dominating set of \(G \). Since \(V(G) = V(G^2) \), there exists a vertex set \(D = \{v_1, v_2, v_3, \ldots, v_k\} \subseteq S \) in \(G^2 \) which covers all the vertices in \(G^2 \) and the sub graph \(\langle D \rangle \) is connected.

Hence \(D \) forms a minimal \(\gamma_c \)-set of \(G^2 \). It follows that \(|S \cup H| \cup |D| \leq p \) and hence \(\gamma_c(G) + \gamma_c(G^2) \leq p \).

For equality, we have the following cases.

Case 1: Suppose \(G \) is isomorphic to \(C_3 \) or \(P_3 \). Then in this case \(|S \cup H| = 2 \) \(|D| \) and \(|D| = 1 \). Clearly, it follows that \(\gamma_c(G) + \gamma_c(G^2) = p \).

Case 2: Suppose \(G \) is isomorphic to \(C_6 \) or \(P_6 \). Then in this case \(|D| = 2 \) and \(|S \cup H| = 2 |D| \). Clearly, it follows that \(\gamma_c(G) + \gamma_c(G^2) = p \).

The following result gives the relation of connected domination of \(G^2 \) in terms of vertices and maximum number of independent vertex of \(G \).

Theorem 2.13: For any connected \((p, q) \)-graph \(G \), \(\gamma_c(G^2) \leq p - \beta_0(G) \).

Proof: Suppose \(F = \{v_1, v_2, v_3, \ldots, v_n\} \) be the set of all end vertices in \(G \) then \(F \cup B \) where \(B \) is a proper subset of \(V(G) - F \), which are not adjacent to the vertices of \(F \) forms a minimal independent set of vertices such that \(|F \cup B| = \beta_0(G) \). Now in \(G^2 \), since the distance of \((u, v) \geq 2\) for all \(u, v \in V(G^2) \) and induced sub graph \(B \) is connected and vertices of \(B \) covers all the vertices in \(G^2 \). Clearly, \(B \) self is a \(\gamma_c \)-set of \(G^2 \). Otherwise there exists at least one vertex \(w \notin B \) in \(G^2 \), such that the sub graph \(\langle B \cup \{w\} \rangle \) forms a connected sub graph in \(G^2 \). Therefore it follows that \(|B \cup \{w\}| \leq p - |F \cup B| \) and hence \(\gamma_c(G^2) \leq p - \beta_0(G) \).

Theorem 2.14: Let \(G \) be a connected graph and \(H \) be any connected spanning sub graph of \(G \). Then every connected dominating set of \(H^2 \) is also a connected dominating set of \(G^2 \) and hence \(\gamma_c(G^2) \leq \gamma_c(H^2) \).

Proof: Suppose \(H \) is totally disconnected or disconnected with at least one component as an isolated vertex. Then we consider \(V(G) = \{v_1, v_2, v_3, \ldots, v_n\} \) and \(S = \{v_i\} \), \(1 \leq i \leq n \) such that \(S \subseteq V(G) \) in such a way that every vertex of \(V - S \) are at a distance of at most two with respect to the corresponding vertices of \(S \) in \(G \) which gives a connected minimal connected dominating set in \(G^2 \). Let \(v_j \) be an edge of \(G \) such that \(i < j \) and \(\forall i, j = 1, 2, \ldots, (n-1) \). Suppose \(H \) is a minimal connected spanning sub graph of \(G \) and \(E(H) = E(G) - v_i v_j \). Since \(V(G^2) = V(H^2) \) then \(S \) is also a minimal connected dominating set of both \(G^2 \) and \(H^2 \) which gives the equality \(\gamma_c(G^2) = \gamma_c(H^2) \). If \(H \) is totally disconnected then \(V(G^2) = V(H^2) \) such that \(E(H^2) = \phi \) and \(\gamma_c(H^2) = V(G^2) = n \), where \(n \) is the number of vertices in \(G \). Now one can easily verify that \(\gamma_c(G^2) < \gamma_c(H^2) \). Otherwise \(\gamma_c(G^2) \leq \gamma_c(H^2) \).

Finally we provide Nordhaus – Gaddum type result.

Theorem 2.15: For any connected \((p, q) \)-graph \(G \),

(i) If both \(G^2 \) and \(G^2 \) are connected, then
(a) \(\gamma_c(G^2) + \gamma_c(G^2) \) \leq p + 1.
(b) \(\gamma_c(G^2) \cdot \gamma_c(G^2) \) \leq p.

(ii) If both \(G^2 \) and \(G^2 \) are connected, then
(a) \(\gamma_c(G^2) + \gamma_c(G^2) \leq p + 1.
(b) \gamma_c(G^2) \cdot \gamma_c(G^2) \leq p.
REFERENCES

